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Abstract 

Accurate travel demand modelling (TDM) is crucial for desirable transportation and urban planning. 

Origin–destination (OD) matrix estimation is an important component of TDM. Conventional OD 

matrix estimation methods require travel surveys which are costly and time-consuming. Moreover, 

conventional methods are too simplistic to represent real world situations while modern methods are 

too complicated to be scalable. Investigation of comprehensive and scalable OD matrix estimation 

methods that use low-cost inputs are an imperative for transportation researchers. One such method 

is deep learning. 

 

People generate more and more data about their trips thanks to the new technologies such as ride 

hailing/sharing apps, GPS, and smart card. On the other hand, deep learning methods are being 

developed that can handle large amounts of data and can successfully perform difficult estimation 

tasks. Therefore, it is useful to see if deep learning can successfully predict an OD matrix. In this 

research, we develop a novel 2-step deep learning algorithm that uses nearby points of interest (POIs) 

of zones as input and estimates interzonal trips. We believe that this model will provide an 

inexpensive and scalable alternative to the conventional OD matrix estimation methods.  
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1. Introduction 

Travel demand modelling is the estimation of frequency of trips between predetermined places, or 

zones, for various transportation modes and routes. Conventionally, 4-step modelling has been used 

to estimate demand: trip generation, trip distribution, mode choice and route assignment [1]. With 

trip generation, we estimate the number of trips originating and/or ending in zones. In trip distribution, 

trips originated and ended in the previous step are matched with destinations and origins, respectively. 

By the end of trip distribution, we have constructed an origin–destination (OD) matrix. This OD 

matrix could be obtained over various time spans such as an hour, a day or a week. After trip 

distribution, the trips are allocated to different travel modes and routes. 

 

OD matrix estimation has traditionally involved OD surveys. Obtaining a representative survey 

sample size that can be used to infer about the whole OD matrix is expensive [2].  Recently, more 

data driven approaches have been emerging. For example, traffic counts or highway toll records are 

being used instead of travel surveys [3]. If we have marginal OD sums1, gravity model can be used 

to allocate those sums into OD pairs [4]. According to the gravity model, the interzonal trip amount 

is proportional to the total trips produced at origin (or productivity), total trips ending at destination 

(or attraction), and reversely proportional to the friction between these zones. Conventionally, 

population, economic activity, and land use data have been used to describe production and attraction. 

Friction can be described as time, cost or inconvenience of an interzonal trip. On the other hand, when 

we have an old OD matrix or a current one with some empty entries, current and complete OD matrix 

can be constructed from that matrix using growth factor models [5]. 

No matter if we use the gravity model or growth factor models, we need a costly input data. In gravity 

model, production and attraction capacity of each zone should be quantified. On the other hand, 

 
1 Marginal OD sums are the sums over the rows and columns of the OD matrix. It is the product of the trip generation 

step. 
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growth factor models require at least a partial OD matrix. Therefore, it is imperative for us to develop 

an inexpensive model for travel demand estimation. 

 

In this research, we propose a new method for estimating OD matrix with deep learning using maps. 

In line with the gravity model, it can be thought that productivity of the origin, attraction of the 

destination and the generalized cost of traveling from origin to destination are the 3 most determinate 

factors for total trip amount between an origin and destination. While cost can be easily calculated 

thanks to the modern map technologies, it is quite difficult to accurately describe the production and 

attraction capacity of zones. One common approach to determine attraction and production is to 

consider the land use. It is obvious that land use has an explanatory power in estimating trips; most 

people will go from residential areas to commercial and industrial areas in the morning and they will 

do the trip in the opposite direction in the evening. However, not all commercial areas have the same 

attraction capacity. For determining the capacity, we can further incorporate variables such as 

building or population density. More residential houses mean more people will do trips from those 

zones. Moreover, the contents of the zones are important in estimating the trips. A shopping area will 

attract people throughout the day while an entertainment area might attract people only in the evening. 

The effect of the contents of zones on travel behavior becomes even more pronounced when it comes 

to mode choice: an area with a small number of parking lots will attract relatively less cars. In the 

transportation research lexicon, places such as subway stations, parking lots, offices, and houses are 

called points of interests (POIs). Following the logic of this paragraph, we see that the attraction and 

production of each zone might be explained by what kind of POIs and how many of such POIs we 

have in that zone. For example, we can easily imagine the temporal distribution of trips between 2 

zones, zone i and zone j, where i has 50 houses, 4 parks, 1 school, and j has 15 offices, 7 restaurants 

and 3 parking lots.  



 

If we have the generalized cost, either travel time, monetary cost or distance in addition to the POI 

data, we hypothesize that it could be possible to estimate the OD matrix given these two datasets. In 

this research we test this hypothesis with a deep learning model. 

2. Motivation 

We have 2 reasons to conduct this research. Firstly, it is expensive and time-consuming to obtain OD 

matrix using traditional survey data. We want to develop a model that can create an accurate OD 

matrix with low-cost input. Our model is going to use POI and distance data as input. With today’s 

technology, these datasets can be found easily by just looking at maps. For example, on Google Maps, 

one can find the nearby restaurants by just searching for “restaurants”. If we were to do this for all 

the POI types, we can get an exhaustive list of POIs for our zones. Although one has to use Google 

Maps API to get such data and pay a fee, the fee is minimal. 

 

Another option for acquiring input would be to tap into the data that is generated via open-source. 

One example is Open Street Map (OSM).2 OSM provides free geographical data and maintained by 

volunteers. Although OSM data is free, the data quality differs from place to place due to the fact that 

OSM is open-source. For example, in places with high internet usage, high OSM familiarity and high 

number open-source contributors, the data of OSM matches the quality that of Google Maps. 

However, in some areas with little user activity, most of the POI data does not exist or it is obtained 

in bulk by OSM from government agencies, which naturally do not disclose the full data due to the 

privacy issues. In such cases, building footprints may be registered on OSM but the contents of 

buildings are unknown. 

 
2 openstreetmap.org 
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Another motivation for using map data is that, in most countries, local or central authorities have an 

exhaustive list of all the POIs found within a city because an establishment has to either register at 

the city hall or get a license. With a successful model that can predict the OD matrix with POI and 

distance data, the local or central governments can apply this in transportation planning using their 

own data for input and get rid of costly travel surveys.  

 

All in all, digital maps have abundant and low-cost data, which makes it a perfect input candidate for 

our travel demand estimation study. 

 

Secondly, we may know that a relationship exists between POI distribution, distance and travel 

demand, however, it is quite difficult to develop a model that is accurate and scalable. Therefore, we 

employ deep learning as our travel demand estimation model. Deep learning is a branch of machine 

learning, that is used for estimating a label (true value) given input. The name deep is used because 

the input data goes through different layers until the final output, changing shape and content along 

the way. In addition, nonlinear operations are implemented at each layer. Thanks to the complexity 

of the method, a deep learning model can learn intricate relationship between the input and the label. 

As of 2020, deep learning models have been successfully trained for tasks such as object detection, 

natural language processing and drug development. All these tasks have intricate relationships 

between the input and labels, similar our travel demand estimation problem.  

  

Another reason we choose deep learning is the abundance of data. Google Maps claims to have more 

than 150 million places, or POIs, worldwide.3 As mentioned earlier, this extensive map data can be 

 
3 https://cloud.google.com/maps-platform/ 
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obtained with low-cost and fed into the model. A deep learning model is as good as quantity and 

quality of its training data; hence we are expecting that the model will be able to learn the relationship 

between POIs and trips.  

In summary, we have decided to estimate the OD matrix by deep learning using maps because map 

data can be obtained with low cost and includes the POI and distance data, while deep learning can 

efficiently understand the intricate relationship between POI, distance and travel demand. 

3. Literature review 

OD matrix estimation models differ by the data they use or the method they employ. Here, we review 

literature based on these 2 factors. 

3.1.Review by method 

OD matrix estimation has been conventionally done by using 3 family of models which are, growth 

factor models, synthetic models, and opportunity models.  

 

Growth factor models require an existing base matrix. For example, uniform growth factor method 

updates all the trips between OD pairs uniformly from an early OD matrix into the present one. The 

growth rate is calculated as the capacity increase in the whole network, either population increase or 

observed traffic increase. This model ignores the individual changes in links. Average growth factor 

method takes differences in zonal growth into account and updates the zones individually. Fratar 

method is another example of growth factor method which has been proposed in 1954 for estimating 

interzonal highway traffic [6]. Present (or past) OD matrix is updated into future (or current) OD 

matrix by fixing the total target trips originating and ending at each zone, making this a doubly 

constrained optimization problem. After successive iterations, present OD matrix elements are 

updated so that the sum of trips satisfy the target total trips. A disadvantage of growth factor models 
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is that they usually ignore the changes in the network characteristics such as link capacities, road 

quality, and infrastructure updates.  

Synthetic models are a family of models that were imported to transportation research from another 

fields. A prominent example is gravity model which has been inspired by Newton’s law of gravity. 

It is thought that trips between two zones are proportional to the masses (production and attraction) 

of the zones and inversely proportional to the distance (or generalized cost) between the two zones. 

Gravity model in its simplest form states that cumulative trip amount between zone i and j, 𝑇𝑖𝑗,  can 

be calculated as: 

𝑇𝑖𝑗 = 𝐾
𝑃𝑖𝐴𝑗

𝑑𝑖𝑗
𝑛  

where, 

𝑃𝑖 = Total trips originating from i (or productivity at i), 

𝐴𝑗 = Total trips ending in j (or attraction at j), 

𝑑𝑖𝑗 = costs of travelling from i to j, 

K, n = constants. 

For 𝑃𝑖  and 𝐴𝑗 , proxy values instead of total trips can be used. These values should represent the 

productivity and attractiveness of zones, respectively. Values such as land use, population density, 

average floor to area ratio can be used to quantify productivity and attractiveness. 

 

The first opportunity model was the intervening opportunities model which was proposed by Stoufer 

in 1940: “the number of persons going a given distance is directly proportional to the number of 

opportunities at that distance and inversely proportional to the number of intervening opportunities” 

[7]. The opportunity models fall under the general formula: 

𝑇𝑖𝑗 = 𝑇𝑖𝑃(𝐷𝑗) 
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where, 

𝑇𝑖𝑗 = trips between zones i and j,  

 𝑇𝑖 = total trips generated at zone i, 

 𝑃(𝐷𝑗) = probability of trips ending in zone j. 

Recently, more sophisticated explanatory and predictive models have been applied for OD matrix 

estimation such as, trip-chaining models [8], deep learning [9], Markov chain Monte Carlo method 

[10], and Bayesian inference [11]. 

3.2.Review by input data type 

As mentioned earlier, OD surveys are costly, therefore researchers have been trying to estimate OD 

matrix with inexpensive proxy data. For example, one study used data from location based social 

network application Foursquare and trip planner Rome2Rio to estimate travel demand [12]. Some 

examples of input data among many are GPS [13], smart card [14, 15], mobile phone billing data 

[16], mobile network probe data [17], and Bluetooth [18]. Trips of the modern people are almost 

always recorded, either willingly by updating their status on social networks or unwillingly by usage 

of map services, WIFI or ride sharing apps. These large datasets are quite valuable because conscious 

input is small compared to the travel survey, hence reducing bias. Secondly, since these datasets are 

already being collected and stored by corporates, it can be anonymized and shared with researchers 

with minimal cost for developing better travel demand models. 

 

The input data that we are planning to use comes from OSM. OSM data has been used as input for 

various prediction tasks. For example, the road network and POI data from OSM has been employed 

to estimate fine-grained population [19]. Another research uses OSM data to predict real time traffic 

conditions in China [20]. Moreover, OSM data has been used for predicting various parameters such 

as land use distribution [21], poverty rate [22], and transport fatalities [23]. 
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4. Methodology 

Here, we explain the 3 steps of our methodology, obtaining labeled dataset (OD matrix), acquiring 

and organizing inputs (POIs, distance), and model architecture (deep learning). Our work starts with 

finding a labeled dataset. When we find an OD matrix that we can use for training our model, we 

extract its drive network and POIs and use them as inputs to our model. Finally, we train the algorithm 

using the inputs and estimate the OD matrix. Please see Figure 1 for a flow chart of our methodology. 

  



 

Figure 1: Flowchart of data collection and training 

  

Labeled dataset (OD matrix) is obtained

Road network (nodes and edges) for the OD matrix area is extracted

POIs around nodes are collected

Zones are ambedded into the network

Interzonal distances are calculated

Deep learning model is trained
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4.1. Obtaining labeled dataset 

Although we have virtually ubiquitous input data (POIs, distance), our model is limited by travel 

demand data we have. Thanks to the advance of technology, most of our trips are leaving digital 

footprints which can be used as a labeled dataset for our model. Examples of such data are smart card 

data, ride-hail app data, mobile GPS data, automatic vehicle location (AVL) data. The trip data we 

use is the number of taxi trips in New York City (NYC) for a period of one month in January 2019. 

NYC Taxi and Limousine Commission has been publishing the taxi trip data since 2009. The trips 

from 3 different taxi types are included in the dataset: yellow taxi, green taxi and for-hire vehicles. 

Each row in the dataset is a trip that took place within January 2019 and includes pull-up (origin) and 

drop-off (destination) locations. These locations are represented by zone IDs. NYC is divided into 5 

boroughs: Manhattan, Brooklyn, Queens, Bronx, and Staten Island where each borough is divided 

into zones. We have chosen Manhattan and Brooklyn as our target locations for cross-testing the 

model. Some of the zones in these 2 boroughs are islands which cannot be accessed by taxis. After 

deleting zones with no accessibility, Manhattan and Brooklyn had 62 and 61 zones respectively (3844 

and 3721 OD pairs). Please see Figure 2 for Manhattan and Brooklyn zones and zone centroids. The 

number of trips that took place within Manhattan were 17,478,092 while Brooklyn had 4,258,389. If 

we add the cross-borough trips between Manhattan and Brooklyn, the total number of trips that took 

place in Manhattan and Brooklyn is 23,526,117 which amounts to around 5 taxi trips per residents of 

Manhattan and Brooklyn within a month [24]. Since Manhattan and Brooklyn boroughs had high 

number of taxi trips, we decided to use only the month of January 2019 thinking it would be enough 

for model. 

  



 

Figure 2: Zones of Manhattan and Brooklyn and their centroids 
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4.2. Acquiring and organizing inputs 

We use OSM to get the POI and distance data. 3 main elements in OSM are nodes, ways and relations. 

Nodes are points on the map, a node can be an intersection or a corner of a building. Ways are 

collections of nodes. Ways represent the roads or the periphery of structures. For example, a 

rectangular building will be a “way” of 4 nodes which are located at the corners of the building while 

a highway will be a collection of many nodes lined up along the road. Relations are collections of 

nodes and ways. For example, a bus route may be represented as a collection of nodes (bus stops) and 

ways (bus route). Any element in OSM might have tags associated with it. A tag is a key-value pair. 

For example, a common key is amenity which shows places of entertainment, recreation, and etc. The 

key amenity will have a value associated with it, such as: shop, museum, park; creating amenity-shop, 

amenity-museum, amenity-park key-value pairs, or tags.  

 

Our deep learning model requires a graph representation of the drive network of the city as input. A 

graph is a construct with nodes and edges. In our graph, nodes are road intersections while the edges 

are roads that link them. As mentioned, roads in real world are represented by ways in OSM. A road 

will have a highway key associated with it. The roads that we are interested in, the drivable roads, 

will have their highway key coupled with one of the below values4: 

• Motorway 

• Motorway link 

• Trunk 

• Trunk link 

• Primary 

 
4 Please see https://wiki.openstreetmap.org/wiki/Key:highway for a full list of values that highway key can be coupled 

with.  

• Primary link 

• Secondary 

• Secondary link 

• Tertiary 

• Tertiary link 

• Unclassified 

• Residential 

• Road 

https://wiki.openstreetmap.org/wiki/Key:highway
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If we want to create a graph of a road network of a certain area, we can get the OSM map data 

of that area and find all the ways that have the key highway and any value from above list. 

When 2 ways have a node in common, we can pinpoint that node as a road intersection and 

build our graph. The OSMnx library in Python helps us extract and visualize the road network 

from OSM. Each node in the extracted graph is an actual node in OSM and represents a road 

intersection. A node has attributes of longitude and latitude. Each edge has its length and road 

type as an attribute and represents a real road. Figure 3a shows a piece of map and Figure 3b 

is a network representation of that map, extracted using OSMnx. 

 

Once we have our network, the next step is to extract the nearby POIs for each node in the 

network. Below are the steps that we follow for POI extraction: 

1. Select a geographical area from OSM that encompasses the drive network that was 

extracted previously.  

2. Download the OSM datafile from openstreetmap.org using overpass API.5 At the end 

of this step we have all the information (nodes, ways, and relations with all the key-

value attributes) for that area. Please see Table 1 that shows how nodes, ways and 

relations are stored in this data file. 

3. We use The Element Tree XML API library of Python to extract the POIs of interest to 

us from the downloaded file. Deciding what is a POI and what is not can be ambiguous. 

For example, OSM has key value pairs such as “highway-junction”, “natural-tree”, 

“amenity-bench”. Can junctions, trees or benches be counted as POIs? Since deep 

learning requires abundant input data, we keep the definition of POI as wide as possible. 

At the end of the day, the deep learning algorithm will determine the importance of 

 
5 https://www.openstreetmap.org/export 

https://www.openstreetmap.org/export#map=11/40.5725/-73.8319
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each of the POIs. Among dozens of keys an OSM element might have, we determined 

that the 24 of them can be counted as POIs. Once a node or a way has one of these 24 

keys, we count it as a POI no matter what the value of the key is. (Relations are ignored 

because nodes and ways already contain the data that is stored in relations.) Those 24 

keys are: 

 

1. Leisure 

2. Club 

3. Sport 

4. Parking 

5. Natural 

6. Bench 

7. Amenity 

8. Shop 

9. Studio 

10. ATM 

11. Shelter 

12. Healthcare 

13. Memorial 

14. Manmade 

15. Historic 

16. Subway 

17. Bicycle parking 

18. Toilets 

19. Craft 

20. Office 

21. Train 

22. Covered 

23. Land use 

24. Tourism

 

We store each element as a key-value pair. For example: amenity-graveyard, natural-

beach, leisure-park. If the POI is extracted from an OSM node, the node already has its 

coordinate data, so we record it. If it comes from a way element, we get the centroid of 

the way and assume that the POI is located at the centroid. 

4. At the end of step 3, we have a list of POIs. Each row in this list contains the type of 

POI and its coordinate. Using the nodes from the network we extracted earlier, we 

find the POIs within 100 meters radius (this number can be arbitrarily chosen) of each 

node. We use the haversine formula to calculate the distance between the 2 points on 

a circle: 



4 

𝑑 = 2𝑟 sin−1 √sin (
𝑙𝑎𝑡2 − 𝑙𝑎𝑡1

2
)

2

+ cos(𝑙𝑎𝑡1) cos(𝑙𝑎𝑡2) sin (
𝑙𝑜𝑛2 − 𝑙𝑜𝑛1

2
)

2

 

where, 

𝑑 = distance between points 1 and 2, 

𝑟 = radius of the sphere (Earth), 

𝑙𝑎𝑡1 = latitude of point 1 in radians, 

𝑙𝑜𝑛1 = longitude of point 1 in radians, 

𝑙𝑎𝑡2 = latitude of point 2 in radians, 

𝑙𝑜𝑛2 = longitude of point 2 in radians. 

Since Earth is not a sphere, the distance calculated with the haversine method will 

contain an error. In order to hedge for that error, we look for POIs that are within the 

circle centered at the node centroid with 110 meters radius. 

5. At the end step 4, we finally have an input POI matrix of size n x p, where n is the 

number of nodes and p is the total number of types of POI. The 𝑃𝑂𝐼𝑖𝑗  element shows 

how many 𝑗 type of POI we have within 100 m radius of 𝑖𝑡ℎ node. 

 

After network extraction and POI collection steps, each node in our graph will have an attribute 

vector containing the POIs around it. From here on, we take a look at our trip data (OD matrix). 

Our origins and destinations, or zones, will be contained within the network we just extracted. 

The number of zones is usually smaller than the number of nodes since it is limited by how 

much trip data we have. The geometries of the previously mentioned 123 (62 from Manhattan 

and 61 from Brooklyn) zones are published by NYC as part of NYC Open Data.6 The centroids 

of these zones are found by using shapely library for Python and are associated with the nearest 

node in the network.  Please see Figure 4 for the drive network that has the zone centroids 

 
6 https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc 

https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
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(zone-nodes) embedded as nodes. From here, we proceed to calculate the interzonal distance. 

If our trip data includes the get on and get off times, we can calculate the travel time and use it 

as a cost. If we don’t have this data, we can calculate the distance between each node and use 

it as a cost. However, the distance should not be direct distance between 2 points in space and 

should take the geometry of the route into account. The graph extracted by OSMnx preserves 

the road geometries and we can calculate the shortest paths between each zone-node using 

NetworkX library for Python. After this process we have cost matrix with the size of z x z where 

z is the number of zones, now each of them is a node in our network.  

  



 

Figure 3a: A map tile on OSM 

 

Figure 3b: Network representation of Figure 3a 

  



Table 1: OSM data structure 

Element Data Notes 

Node <node  

id="2568320815" 

lat="40.6949053" 

lon="-73.9809461" 

version="1" 

timestamp="2013-12-06T17:39:41Z" 

changeset="19309861"  

uid="1781294"  

user="Rub21_nycbuildings"> 

<tag  

k="addr:housenumber"  

v="31"/> 

<tag  

k="addr:postcode"  

v="11201"/> 

<tag  

k="addr:street"  

v="Fleet Walk"/> 

</node> 

A node has an OSM id, latitude 

and longitude as attributes. 

Moreover, the node has tags and 

each tag is made up of k (key) 

and v (value). 

Here, we can observe that this 

node represents a house in the 

real world.  

Way <way  

id="690986719"  

version="1"  

timestamp="2019-05-19T05:59:04Z" 

changeset="70401645"  

uid="8369524"  

user="swappa"> 

<nd ref="42464621"/> 

<nd ref="42464614"/> 

<nd ref="42464610"/> 

<nd ref="5581955056"/> 

<nd ref="598043811"/> 

Ways are a combination of 

nodes. Each <nd > found in the 

way element represents an OSM 

node. The reference attribute of 

the nd is the id of the node. 

Here, we can see that this way 

is a collection of 5 nodes, and it 

is a residential road. 



<tag  

k="highway"  

v="residential"/> 

<tag  

k="name"  

v="Prince Street"/> 

… 

<tag  

k="tiger:zip_right"  

v="11201"/> 

</way> 

Relation <relation  

id="3971059"  

version="9"  

timestamp="2019-09-17T00:23:48Z" 

changeset="74553171"  

uid="429761"  

user="freebeer"> 

<member  

type="way"  

ref="297680846"  

role=""/> 

<member  

type="way" 

ref="25753498" 

 role=""/> 

    … 

<member  

type="way"  

ref="298198779"  

role=""/> 

<tag  

k="FIXME"  

Relations are combinations of 

nodes and ways. While ways 

have <nd > elements, relations 

have <member > elements. 

Each member is either a node, a 

way, or in some cases, another 

relation. Each member will have 

its type, reference number 

(OSM id) and its role within 

this relation as attributes. In this 

case, the relation is a subway 

line. Here we see an interesting 

tag, which has the key value 

“FIXME”. Although this 

relation was created by a user 

called “freebeer”, another user 

has made a suggestion to 

change the value of a key-value 

pair. Since OSM is an open 

source project, the contributions 

from users are crucial to the 

accuracy of the data.  



v="This is a route=railway. If you 

wish to denote a passenger train (as 

this appears to do), use a route=train 

relation which uses this 

infrastructure"/> 

<tag  

k="from"  

v="Middle Village"/> 

<tag  

k="name"  

v="BMT Myrtle Avenue Line"/> 

<tag  

k="operator"  

v="MetropolitanTransportation 

Authority"/> 

<tag  

k="route"  

v="railway"/> 

    … 

<tag  

k="wikipedia"  

v="en:BMT Myrtle Avenue Line"/> 

</relation> 

 



 

Figure 4: Zone centroids embedded as nodes in the drive network 
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4.3.Model architecture 

The nodes in a city’s transportation network cannot be thought independent of the other nodes, 

therefore, it is crucial to incorporate the nearby nodes’ information to each node.  This can be 

achieved by treating the network as graph and apply convolution. Graph convolution is a 

method used in machine learning for handling inputs where elements have interdependencies 

with each other. An example for this could be drug discovery, where machine learning is 

applied to identify molecules that are promising for drug development. Each molecule can be 

thought as a graph and the way each atom is connected to other atoms in the molecule defines 

the properties of the molecule. Hence, connections as well as atoms themselves should be used 

as an input for robust prediction. Our cities are extensive networks (graphs) where a zone’s 

attraction or production is determined by how connected that zone is to the other zones in the 

city. Graph convolutional network (GCN) (or graph neural network) is a version of deep 

learning where graph convolution is applied at each layer. Let’s assume that our city is 

represented as a graph of nodes (n) and edges (e). Each of our node has an attribute vector of 

POIs around them. The POIs for whole city are represented as a feature (or attribute) matrix 

𝐅𝑛 x 𝑝 where p is the number of total types of POIs. The graph of the city is represented by an 

adjacency matrix 𝐀𝑛 x 𝑛 where 𝐴𝑖𝑗 is 1 if there is a link between nodes i and j, and 0 otherwise. 

Moreover, 𝐴𝑖𝑗 itself can have an attribute vector showing the length of the link or the time or 

cost it takes to go through that link. In our research, we simply use 1-0 representation of edges 

because we will later introduce link costs in our deep learning architecture. Then, at each graph 

convolution layer, our graph goes through transformation: 

𝐇(𝑖+1) = f(𝐇(𝑖), 𝐀) 

where, 

𝐇(0) = 𝐅𝑛 x 𝑝 = input, 

𝐇(𝑁) = 𝐎𝑛 x 𝑞  = output of the graph convolution architecture. 
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As seen, the initial number of types of inputs (p) can be either increased or decreased down to 

q number attributes per each node. We can think of these final attributes as representative of 

the surroundings of the node (residential, commercial, industrial, and etc.). An effective 

function f that transforms the graph at each layer has been proposed by Kipf and Welling [25] 

as: 

𝐇(𝑖+1) = f(𝐇(𝑖), 𝐀) =  ReLu(�̂�−
1
2�̂��̂�−

1
2𝐇(i)𝐖(𝑖) + 𝐛(𝑖)) 

where, 

ReLU = rectified linear unit activation function ( ReLu(𝑥) = max(0, 𝑥) ), 

�̂� = A + I (Identity matrix), 

�̂� = node degree matrix of �̂�, 

𝐖(i) = weight matrix at layer i, 

𝐛(i) = bias matrix at layer i. 

Here, identity matrix is added to A because A has a 0 diagonal (nodes don’t have edges with 

themselves) which means we don’t add the information of the node to itself when we are 

collecting information from neighboring nodes. By adding the identity matrix, the information 

of the neighboring nodes as well as that of node itself is passed on the next layer. Node degree 

matrix D is a diagonal matrix of size n x n showing how many links each node has. Here, �̂�−
1

2 

is multiplied with �̂� to normalize the attribute vector of each node. We use deep graph learning 

(dgl) library for Python for creation and convolution of our graph. 

 

At the first layer of the GCN, a node is able to collect information of neighboring nodes of 1st 

degree. At the second layer, the neighboring nodes had already collected information about 

their neighboring layers at the first layer, hence the original node has access to the nodes of 2nd 

degree. Therefore, a node’s information circle enlarges at each layer. When deciding how many 

layers that GCN will have, caution must be taken because if the number of layers is too small, 
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the nodes will lack critical neighboring information. On the other hand, if we have too many 

layers, each node’s information will converge to an average value and we will lose critical local 

information. In our research, our graph convolution will have 4 layers (1 input, 2 hidden, 1 

output), however further research is necessary for determining the optimal number of GCN 

layers for accurate prediction. 

 

The result of the GCN is a matrix 𝐎𝑛 x 𝑞 , where each node has a vector of size q encapsulating 

the local POI data. In our research we have chosen q as 10. Although 10 may sound little, in 

order to run several tests in short time we have decided to keep the problem size small. From 

here on, O is re-organized to be fed to the upper deep learning layer, which is a multilayer 

perceptron (MLP). For each OD pair we have, we create a vector of size 2q + 1, where 1q 

elements are the POI output at origin, 1q elements are POI output at destination and 1 element 

is the cost (distance) between the origin and destination. The transformation function at each 

layer is 

𝐇(𝑖+1) = f(𝐇(𝑖), 𝐀) = ReLu(𝐇(𝑖)𝐖(𝑖) + 𝐛(𝑖)) 

where, 

𝐇(0) = 𝐗𝑧2 x (2𝑞+1) = input, 

z = number of zones (origins and destinations) (number of OD pairs = 𝑧2), 

𝐇(𝑁) = 𝐘𝑧2 x 1 = output of the MLP. 

The output of the MLP is an OD matrix, where the elements are lined up in 1 column. The 

output is compared with the real values and loss is calculated. Thereafter, gradient of the loss 

with respect to weights and biases in GCN and MLP are calculated and those matrices are 

updated. We use pytorch library for python for training and testing the deep learning algorithm. 

Pytorch library records all the operations we do on inputs in our model and calculates gradients 
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automatically. We set the optimizer as Adam optimizer [26], loss criterion as mean square error 

loss7 and learning rate as 0.01. Please see Figure 5 for flowchart of our deep learning model. 

  

 
7 https://pytorch.org/docs/stable/nn.html#torch.nn.MSELoss 

 



 

Figure 5: Deep learning model structure 
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5. Results  

5.1. Training 

We divide each of the datasets, Manhattan (M), Brooklyn (B), Manhattan and Brooklyn (MB), 

into training and testing subsets with a ratio of 80% and 20%. Before division we shuffle the 

dataset so that training and testing subsets will not have any idiosyncrasies. We train the 

algorithm for 500 epochs using the training subset. An epoch is an iteration during which the 

whole training subset goes through the model and weights are updated at the end of it. Please 

see Figures 6a, 6b and 6c for learning processes of these 3 areas. For M and MB, we see a 

normal learning behavior where the loss is converging to a value after some epochs. Test loss 

is closely following the training loss which shows that weights learned by using training dataset 

can explain the test dataset. We see a big jump in loss in B learning near the 400th epoch, 

however it quickly goes back to converged value. Another peculiarity of Brooklyn learning is 

that, test loss seems to be less than the training loss almost throughout the learning. However, 

as the model reaches near 500th epoch, training loss becomes less than the test loss, as expected. 

  



 

Figure 6a: Learning process of Manhattan travel demand estimation 

 



Figure 6b: Learning process of Brooklyn travel demand estimation 

 

Figure 6c: Learning process of Manhattan and Brooklyn travel demand estimation 
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5.2. Validation 

For validation, we calculate the R-squared of the test data at the end of the learning (500th 

epoch). M, B and MB reach R-squared of 89%, 86%, and 91%. Please see Figures 7a, 7b, and 

7c for the distribution of labels (true value) and predictions for the testing subset (20% of the 

whole dataset). 

  



 

Figure 7a: Real vs. estimated value distribution for Manhattan 

 



Figure 7b: Real vs. estimated value distribution for Brooklyn 

 

Figure 7c: Real vs. estimated value distribution for Manhattan and Brooklyn 
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5.3. Split ratio analysis 

Split ratio is the ratio of data that we allocate for training from the whole dataset. Since this is 

a deep learning model, the more the training data, the better the prediction power, however we 

are aiming to understand the trip characteristics of our zones with this test. We postulate that, 

as the network gets smaller, the higher split ratio we are going to need. There are 2 reasons for 

this. Firstly, as network size decreases, we are missing some trips that either has an origin or 

destination outside the zone, which is decreasing the quality of our labeled data. Secondly, as 

the network gets smaller, the dataset gets smaller and some trip types cannot be found in the 

training subset, but only in the test subset. In other words, each trip gets more idiosyncratic and 

deep learning model may suffer low accuracy in low split ratios, simply because the model has 

not met some trip types while training. Following the same logic, larger datasets may reach 

high accuracy with low split ratios simply because the size of the dataset.  

 

We implement the test by training the model with different split ratios from 10% up to 90% at 

10% intervals. Please see Figure 8 for the results. We can confirm our hypothesis by observing 

that MB performs better than M and B for most of the split ratios. We can also see in Figure 8 

that the model does not even need a large amount of data to reach satisfactory prediction. Even 

when the model uses 10% of the data for training, R-squared in all datasets is above 0.65. 

  



 

Figure 8: Model training with different train-test split ratios 

  



22 

5.4. Cost performance of the model 

Until now, we have been shuffling the individual OD pairs and divide it into training and test 

datasets. However, in transportation planning, it is unlikely that we will have random OD 

observations in our cities that can be used as an input to our model. We will probably have data 

that has less diversity and some bias. In particular, we are likely to have data for all the trips 

that originate from some zones, and for others, we will have no information. Therefore, it might 

be realistic to shuffle the zones, split into the training and test subsets over the zones. For 

example, if we were to split the dataset with 80%-20%, the training dataset will have all the 

trips that are generated from 80% of the zones while the testing dataset will have the trips that 

are generated in other zones. If the model can satisfy this real-world condition, it can effectively 

replace the conventional OD matrix estimation method, hence we will be able to realize our 

goal of low-cost OD matrix estimation. We have trained our model with split ratios from 10% 

to 90% with 10% interval, 10 times at each step. Please see Figures 9a, 9b, and 9c for results 

of M, B and MB, respectively. We can see that as split ratio increases, deviation among results 

become smaller for M and MB. Please see Figure 9d for a comparison of M, B and MB. We 

can see that even when we use 10% of the zones, the model reaches a median R-squared above 

0.4. Moreover, we can observe that R-squared reaches a saturation when 40% of the data is 

used. With this, we can conclude that, as long as we have 40% of the OD pairs observed, this 

model can successfully predict the unobserved OD pairs. 



 

Figure 9a: Model training with different split ratios among zones for Manhattan (𝑅2 below 

0.5 is not displayed) 

 



Figure 9b: Model training with different split ratios among zones for Brooklyn (𝑅2 below 0.4 

is not displayed) 

 

Figure 9c: Model training with different split ratios among zones for Manhattan and 

Brooklyn (𝑅2 below 0.6 is not displayed) 



 

Figure 9d: Median R-squared results for various zone split ratios 
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5.5. Model performance with low-quality input data 

Another real-world situation is that we will not have good-quality input to feed to our algorithm. 

As mentioned previously, POI data on OSM differs drastically from place to place. In order to 

test the scalability of our model, we conduct learning with different levels of input quality. In 

order to simulate POI data quality at different levels, we create an artificial deletion step just 

before the inference step in our model. At this step, each element of the POI matrix (n x p) may 

get deleted with a probability of d. With deletion, we don’t mean to set that element to 0 but to 

an average value. Please see Figures 10a, 10b, and 10c for model results with different POI 

deletion probabilities. We see that POI deterioration has less effect on MB than M and B. For 

MB, we are even able to reach around 0.8 R-squared for 20% inferior POI data. We use the 

below R-squared formula.8 While highest value it can get is +1, it can be arbitrarily large in the 

negative domain. 

R2(𝒚, �̂�) = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

where, 

𝒚 = vector containing predictions, 

�̂� = vector containing true values, 

𝑦𝑖 = predicted value, 

�̂�𝑖 = true value, 

�̅� = average of predicted values, 

𝑛 = label (or prediction) vector size. 

  

 
8 For calculation of R-squared, scikit-learn library for Python has been used and this formula is obtained from 

the official website of the library: https://scikit-learn.org/stable/modules/model_evaluation.html#r2-score 



Figure 10a: POI quality analysis for Manhattan 

 

Figure 10b: POI quality analysis for Brooklyn 



 

Figure 10c: POI quality analysis for Manhattan and Brooklyn 
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5.6.Cross-validation 

It should be noted that our final objective with this research is to create a universal model that 

can work in cities with different characteristics. Until now, our training and testing datasets 

came from the same network. We want to see if the model trained on a city can successfully 

predict OD matrix of another city. We test this by doing 2 cross-validations between M-B and 

B-M. Unfortunately, the predictions made by the algorithm were not promising with R-squared 

below 30%. 

5.6.1. Possible reasons for poor cross-prediction - 1: POI data quality difference 

One reason for poor cross-prediction could be that 2 networks have similar characteristics, 

making prediction viable but POI data registered for Manhattan is far more than that of 

Brooklyn. On average, a node in Manhattan has 20.4 POIs around it, while a Brooklyn node 

has 6.2. Considering the relative popularity of Manhattan, it is likely that ratio of POIs that are 

recorded in Manhattan OSM is higher than Brooklyn. Moreover, Brooklyn, a less dense urban 

area might have less POIs than Manhattan. Since we don’t have an exhaustive list of POIs for 

these places, it is impossible to confirm. 

5.6.2. Possible reasons for poor cross-prediction - 2: different trip characteristics 

Another reason for poor cross-prediction could be that Manhattan and Brooklyn have 

fundamentally different trip characteristic, making prediction inherently difficult. We conduct 

a test to see which POIs contribute most to the prediction quality in 3 places: M, B and MB. It 

might be the case that some POIs attract or produce many trips in Manhattan while it is 

insignificant in Brooklyn.  

 

Similar to the POI quality test, we put a deletion step right before the inference, deleting (setting 

to average) each POI type one by one. The POI type is averaged for all the nodes in the network. 
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Then, we see which POI decrease the R-squared the most, using the case where none was 

deleted as a reference. Please see Figures 11a, 11b, and 11c for results that show the 9 POI 

types that decrease the R-squared the most when deleted, for M, B, and MB, respectively. By 

looking at the important POI types at M and B, we see that they don’t have a single common 

POI type. These 2 places have indeed different characteristics. For example, a model trained 

in Manhattan puts too much importance trees, while trees are not that important in Brooklyn. 

It could also be the case that trees are not registered in OSM for Brooklyn, therefore the 

algorithm does not have good quality data to begin with. However, with the current dataset, we 

can conclude that an attempt to train a model in Manhattan and test in Brooklyn could be futile 

or any 2 places which have different determinants for trip distribution. However, as we have 

seen in MB case, the results are always better than those of M and B individually, which shows 

that if the model has an input from both areas, it can successfully predict any OD pair regardless 

of locations of O and D. Therefore, in order to create a deep learning model that can predict 

the OD matrix of a city, the algorithm should be exposed to a training dataset that includes the 

characteristics of the target city. Since it is difficult to quantify the characteristics of cities, or 

to find a city that has similar characteristics to the target city, the best way is to train the model 

with as diverse and many data as possible, which again shows that a deep learning model is as 

good as quantity and quality of its training data. 

  



 

Figure 11a: Important POI detection for Manhattan 

 

Figure 11b: Important POI detection for Brooklyn 



 

Figure 11c: Important POI detection for Manhattan and Brooklyn 
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6. Conclusion 

Our motivation with this research was to develop a model for travel demand estimation that is 

cheap and scalable. We found that using different networks for training and testing could be 

fruitless for prediction accuracy. An effective way to achieve good prediction results is to have 

as large as possible training data which ideally includes similar trip patterns that is found in the 

target city. We have generated real world conditions by assuming that only some zones had 

trip data and model successfully filled in the missing OD pairs. This shows that our model can 

be used instead of conventional methods for OD matrix estimation. Considering that map data 

is virtually free, this model provides a cost-effective alternative. 

6.1.Challenges 

There are several challenges that need to be overcome in order for this model to be used in 

practice. Although we mentioned that this model does not require a costly input, it requires a 

lot of time to train the algorithm. For example, training the algorithm with MB data for different 

split ratios almost took a day on a relatively robust computer, even though we hosted our 

tensors on GPU. And the size of the problem was not very big compared with other large 

datasets. If we want to create a universal model, we should have a training dataset that is many 

times bigger than the MB case, which will require a large computing power. We know that city 

officials that want to train their own model may not have such resources or the knowledge to 

optimally use their resources (GPU memory allocation, parallel computing, and etc.). 

Another challenge is the trip data. Thanks to some private and public authorities that make trip 

data publicly available, comprehensive models can be trained. As our society becomes more 

digitalized, we should expect to have more and more trip data that can be used for travel 

demand estimation. 

The last challenge is the collection of good-quality input data. As mentioned before, city 

officials may have an exhaustive list of all the POIs found within their jurisdiction. For 
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individuals like us, we might use Google Maps if we want to have better data, although slightly 

expensive, for training travel demand prediction models. 

6.2.Further work 

Our methodology has so many parameters that can be fine-tuned for further improving the 

model. For example, we tested the model with different split ratios, however we weren’t able 

to investigate the effect of learning rate on the model. Please see Table 2 for a list of parameters 

of our model. As further work, these parameters can be fine-tuned to create a more robust travel 

demand estimation model. 

  



Table 2: Model parameters 

Parameter name Value 

Deep learning 

Model architecture 
Graph convolutional network (GCN) +  

Multilayer perceptron (MLP) 

GCN hidden layers 2 

GCN neurons at hidden layer 64 

GCN activation function ReLu 

GCN output size 10 

MLP hidden layers 1 

MLP neurons at hidden layer 64 

GCN activation function ReLu 

Epoch count 500 

Split ratio 10%-90%, 10%interval 

Optimizer Adam optimizer 

Loss criterion Mean squared error loss 

Learning rate 0.01 

Advanced machine learning techniques 

Dropout rate 0 

Max pooling None 

Mini batching None 

Data 

Locations Manhattan and Brooklyn 

Accepted POI types 24 keys (Total of 732 types) 

Cost data Distance 

Road attributes Not used 

Trip Taxi data 

Trip data duration 1 month (January 2019) 

Data collection 

Map data source OSM 

Nearby POI radius 100 m 
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