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1．Background 

Although the idea of ‘free floating’ is rather new, free 

floating bicycle services (FFBS, also called stationless, 

dockless or station- free), have boomed on the street since 

2015, thanks to the rapid expansion of dozens of private start-

up companies in China and around the world. The new free-

floating mode provides users more flexible choices because it 

allows users to start and end their trip much closer to their true 

origin and destination, compared to the conventional station 

based bikesharing. The hardware on the free-floating bicycles 

has evolved into second generation, which now integrated 

with global positioning systems (GPS) modules and 

Bluetooth communications modules. These characteristics 

have enabled the service providers to gather the time and GPS 

location information of each travel, and even may be able to 

record the GPS path of each travel. This system has the 

potential to become a rich mine of robust travel data. 

 

2. Objective 

In our quasi-dynamic model, with given initial bicycle 

density and OD demand in this time interval, we firstly 

proposed a closest-bicycle seeking process universally 

feasible for any distribution under Euclidean distance, to 

generate the travel cost function for each mode. Based on the 

travel cost function, incremental assignment is used to assign 

OD demand among different modes. The volume information 

on each mode in time N can be used to update the initial 

bicycle distribution for time interval N+1. For the building of 

a quasi-dynamic distribution forecast model, we conduct the 

research processes in each individual time interval. 

 

3. Overall framwork 

We firstly define:  

𝐿,  𝐼: set of links, nodes describing then transport network 

𝜑𝐴 (𝑡): initial distribution of FFBS at time 𝑡 in area 𝐴 

𝑔𝑖𝑗(𝑡): demand from 𝑖 to 𝑗 in time interval 𝑡 

𝑈𝑖𝑗
𝑚(𝑡): utility of mode 𝑚 from 𝑖 to 𝑗 in time interval 𝑡 

𝑋𝑎
∗(𝑡): the equilibrium link flow pattern in time interval 𝑡 

𝑦𝐴 (𝑡): the net bicycle flow at 𝑋𝑎
∗(𝑡) between areas 

At each time interval 𝑡 , the expected process is shown 

below in Figure 1. 

 

Figure 1 Quasi-dynamic distribution forecast model 

The abstraction from PT service in the research area to the 

PT network is firstly done before any interval starts. At the 

beginning of each interval, we firstly provide the bicycle 

distribution at the beginning of this interval, 𝜑𝐴(𝑡), and the 

travel demand during this interval, 𝑔𝑖𝑗(𝑡) , as input. By 

invoking the closest-bicycle-seeking process, which will be 

introduced in the next section, the travel time of each mode 

can be calculated. Based on the travel time, the utility of each 

mode can be acquired. By applying a stochastic network 

loading approach, the link flow pattern will be generated. The 

area flow is the aggregation of the inbound flow and outbound 

flow of each zone. By integrating the initial bicycle 

distribution and the area flows, we can update the final state 

bicycle distribution pattern as the output of this interval, also 

served as the initial bicycle distribution,  𝜑𝐴(𝑡 + 1)  at 

interval 𝑡 + 1 . This updated bicycle distribution together 

with the travel demand of the next interval can again serve as 

the input for next loop. 

 

4. Methods 

Order statistics is adopted to represent the the randomized 

characteristics of free-floating bicycle-sharing in the form of 

link cost. We follow the simple definition given by H.A.David 

and H.N.Nagaraja (2004):  

If the statistically IID random variables  𝑋1, … , 𝑋𝑛  are 

arranged in order of magnitude and then written as 𝑋(1) ≤

⋯ ≤ 𝑋(𝑛), we call 𝑋(𝑖) the 𝑖𝑡ℎ order statistic (𝑖 = 1, … , 𝑛). 

Correspondingly, the 1𝑠𝑡   order statistic is the minimum 

value of the sample, and the  𝑛𝑡ℎ  order statistic is the 

maximum value when the sample size is 𝒏. 

Let  𝑋1, … ,  𝑋𝑛  be random variables, and order statistic 

𝑌(1) = ℎ1(𝑋1, … ,  𝑋𝑛), ,, 𝑌(𝑘) = ℎ𝑘(𝑋1, … ,  𝑋𝑛)  be an 

1-1 transformation, with 𝑥1 = 𝑤1(𝑦(1), … ,  𝑦(𝑛)),   ,, 
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 𝑥𝑘 = 𝑤𝑘(𝑦(1), … ,  𝑦(𝑛))   be the inverse functions. The 

joint pdf of 𝑌(1) to 𝑌(𝑘) is: 

𝑓(1,… ,𝑘)(𝑦1,  … , 𝑦𝑘) = 𝑓[𝑤1(𝑦1, … ,  𝑦𝑛),  … , 𝑤𝑘(𝑦1, … ,  𝑦𝑛)]|𝐽| 

which |𝐽|  is the determinant of the Jacobian matrix. The 

general form of the joint pdf of 𝑌(1) to 𝑌(𝑘) is: 

𝑓(1,… ,𝑘)(𝑦(1),  … , 𝑦(𝑘)) = 𝑛!  ∏ 𝑓(𝑦(𝑘))
𝑘=𝑛

𝑘=1
 

The marginal pdf of 𝑌(𝑗) with sample size 𝒏 is: 

𝑓(𝑗)(𝑦(𝑗)) =
𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
[𝐹(𝑦(𝑗))]

𝑗−1
[1 − 𝐹(𝑦(𝑗))]

𝑛−𝑗
𝑓(𝑦(𝑗)) 

 

5. Case setting 

We tested several different demand patterns and supply 

patterns in our research. These cases can be shown as: 

{One day, N day} scenarios

× {symmetric, asymmetric} demand

× {with, without} noon interval

× {with, without} periphery flow 

Together with uniform demand scenario and another three 

propagation scenarios each starts from one specific zone.  

The evaluating criteria in this research are the total travel 

time, 𝑇𝑡𝑜𝑡𝑎𝑙, and the bicycle supply pattern, (𝐵𝐴, 𝐵𝐵, 𝐵𝐶). 

 

6. Results and Conclusions 

We categorize the results and conclusions into three 

groups. 

1. Microcosmically 

The bicycles in CDB area are ‘diluted’ into 

surroundings during evening peak. This ‘dilution effects’ is 

widely observed. This phenomenon can be explained as 

the easier access to bicycles in highly condensed area.  

Comparing the surrounding zones, bicycles tend to flow 

to smaller zone. This ‘minority paradox’ is also tested and 

explained. Generally speaking, such paradox disappears 

when such zone is too small. 

2. One-day Scenario 

Asymmetric scenarios generally have worse 

performance in total travel time. This can be explained as 

more condensed demand in a specific zone will generally 

worsen the experience of all other travelers in this network 

because of the more intensive competitions. 

The introduction of noon interval does not change the 

optimal supply pattern. Even with the existence of 

periphery flows, the optimal pattern is also acceptable with 

the maximum at 16.7% worse, which suggests analyzing 

major flows in morning and evening peak can also provide 

a modest approximation. 

3. N-day Scenario 

The fluctuation patterns are oscillation convergent in 

each scenario. Separately introducing noon interval or 

periphery flows may not lead to a faster convergence. The 

joint influence of noon interval and periphery flows will 

make the network more stable and faster to converge.  

The supply pattern at equilibrium is different from the 

minimal total travel time pattern. We do not agree this can 

be explained as some transformation of Braess's paradox. 

The bicycle supply is changed after each iteration, thus will 

cause the bicycle supply pattern to change. The changes in 

the supply pattern will automatically influence the 

formation of link cost functions. Together we can find out 

that the network structure is altered after each iteration.  

 

8. Further studies 

This research can be further expanded and modified in the 

following topics.  

1. Evaluate accessibility influence of rebalancing  

In order to develop a better initial supply pattern with 

less rebalancing demand but still maintain a high level of 

usage rate 

2. Evaluate fleet size 

In order to obtain balance between service level and 

fleet size thus bicycles as carefully regulated. 

3. From quasi-dynamic to real-time 

In order to provide more reasonable and realistic 

outcomes such as evaluating long-time travels. 

4. From uniform distribution to more realistic 

distributions 

In order to simulate bicycles accumulating around PT 

stations, such as adopting Rayleigh Distribution.  

5. Real-world scale methodologies 

To avoid O( 𝑛2 ) time complexity of the current 

approach and numerical approaches and approximations 

are essential. 
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