Integration of Activity & Transport Network Equilibrium Models

Prof. William H.K. Lam 林兴强教授
Chair Professor in Civil & Transportation Engineering
Department of Civil & Structural Engineering
The Hong Kong Polytechnic University
电子邮件: cehklam@polyu.edu.hk
Outline

- Remembering of Ryuichi Kitamura
- The Challenge of the Changes
- Background (Objective & Motivation)
- Assumptions & definitions
- Model formulation & solution algorithm
- Numerical study
- Conclusions and future research
Remembering Ryuichi Kitamura
KITAMURA, R. A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment

LAM, W.H.K. Development of probabilistic modal split model using both observed and synthetic generalised costs
TOWARD THE NEXT GENERATION
OF PASSENGER DEMAND
FORECASTING MODELS

presented by

Professor Ryuichi Kitamura
and
Dr. William H.K. Lam

12 - 14 June 1995
Department of
Civil and Structural Engineering
The Hong Kong Polytechnic University

Short Biography of Professor Ryuichi Kitamura:

1972: B.S., Department of Civil Engineering, Kyoto University
1974: M.S., Department of Transportation Engineering, Kyoto University
1978: Ph.D., the University Michigan
1978: Assistant Professor, Department of Civil Engineering,
University of California at Davis
1984: Associate Professor, Department of Civil Engineering,
University of California at Davis
1989: Professor, Department of Civil Engineering, University of
California of Davis
1993: Professor, Department of Transportation Engineering,
Kyoto University

Dr. Kitamura works in the areas of travel behavior analysis and
demand forecasting. He is currently co-editor of the journal,
Transportation. His professional activities have included: Chair,
the Committee on Traveler Behavior and Values of the
Transportation Research Board (TRB); President, International
Association for Travel Behavior Research; Chair, Subcommittee on
Activity and Travel Pattern Analysis, TRB; Editorial Advisory
Board Member, Transportation Research A; Editorial Board
Member, JSCE Journal of Infrastructure Planning and
Management

Narrative Biography of Dr. William H.K. Lam:

Dr. William H.K. Lam received a B.Sc. in Civil Engineering and
M.Sc. in Transportation Engineering from the University of
Calgary in Canada, and a Ph.D. in Transportation Engineering from
the University of Newcastle upon Tyne in U.K.

Dr. Lam is currently an Associate Professor in the Department of
Civil and Structural Engineering at the Hong Kong Polytechnic
University. He is a member of ICE, HKIE, CIT, ITE, a member
of Editorial Advisory Board of the Journal of Advanced
Transportation, and a Fellow of the Institution of Highways and
Transportation (U.K.).

Dr. Lam has undertaken research projects and consultancy works
in the fields of traffic management and transportation planning. He
is completing a research project on “Co-ordination of Transport
Pricing Polices” sponsored by the Research Grant Council of Hong
Kong Government and being involved in “West kowloon
Reclamation - Comprehensive Traffic Analysis Review and
Environmental Impact Assessment” with Halcrow Fox.
Ryuichi Kitamura – Attendance of 2000 HKSTS conference in Hong Kong
Ryuichi Kitamura – Attendance of 2003 HKSTS conference in Hong Kong
Ryuichi Kitamura – Attendance of 2003 HKSTS conference in Hong Kong
Ryuichi Kitamura – Visit of Ryuichi’s house by Hong Kong Group in 2006
Editorial

We are delighted to announce that *Transportmetrica* is being published by the Taylor and Francis Group henceforth. We trust that this will strengthen journal circulation and worldwide distribution as well as enhance reader access.

With an internationally renowned editorial board, *Transportmetrica* was launched by the Hong Kong Society for Transportation Studies in 2005. Its aim is to publish original papers in transportation research and development. To date, we have published 12 issues in 4 years. In fact, within only two years of the inaugural issue, we were informed by ISI Thomson that *Transportmetrica* had been selected for coverage in the Science Citation Index Expanded and the Social Sciences Citation Index, among other citation indices. Such an early inclusion in ISI indices attests to the remarkable quality of an upstart journal. As part of our continuing efforts to build up the journal's prestige, we look forward to your submission of high quality papers online. We sincerely hope that *Transportmetrica* will serve as a vehicle that stimulates novel research initiatives.

As this issue was heading towards press, the news of Ryuichi Kitamura’s untimely death on 19 February 2009 struck us with sadness and a profound sense of loss. A professor at Kyoto University, Ryuichi had given his unstinting support to *Transportmetrica* as Associate Editor. All of us who had the good fortune of having met him were often touched by his cheerfulness, kindness and generosity. His positive attitude and warmth endured even when he was suffering from a long illness.

Few of us undertaking transportation research have failed to be influenced by the breadth and depth of Ryuichi’s scientific contributions to the literature. As a member of the International Scientific Committee of our annual conference, he was a staunch supporter of our activities – despite his hectic work and travel schedules – even in the early years when he was an Invited Speaker at the Society’s 5th conference, for instance. Further, in our Society’s short span of fourteen years of existence, he attended our Society’s annual conferences no less than three times (in 2000, 2001 and 2003) before his deteriorating health curtailed his mobility. Over the years, he encouraged his colleagues and students to attend our annual conferences in Hong Kong and to submit high quality manuscripts to *Transportmetrica*. Indeed, he and a colleague published a highly cited paper, namely Kitamura and Susilo (2005), in the journal’s inaugural issue. We are also grateful that Ryuichi, in his capacity as Chair of the International Conference on Travel Behavior Research (IATBR) held in Kyoto in 2006, chose some of the best papers on travel choice behavior presented there for publication in a Special Issue of Transportmetica (Lo and Lam, 2008). Being recognized as a leading figure in travel...
behavior research by the scientific community, Ryuichi was also keen on and instrumental in nurturing and inspiring young minds. He was a benevolent educator and mentor to many of us.

This issue of *Transportmetrica* is hereby devoted to the memory of Professor Ryuichi Kitamura, his admirable research stance and stellar contributions. We shall sorely miss his scholarship and friendship.

Editors-in-Chief

William H.K. Lam

S.C. Wong

Notes

References

Stimulated from his works

- Basic assumption
 - Travel is a derived demand from a need to conduct activities at different locations

- Purpose is to predict daily activity patterns
 - Which activities – work or non-work
 - For how long
 - When
 - Where
 - Transport mode used with & without HSR.
 - Chaining of trips – e.g. Meeting at Guangzhou in the morning, work at office in Shenzhen, return home in Hong Kong on the same day with HSR.
The Challenge of the Changes

- HSR as substitute for air over longer distances and road over shorter distances
- Ideal distance 400-600km
- Mode substitution and trip generation (induced demand)

Major changes:
- As competition to air transport – change of modes
- The growth of longer distance commuting – change of demand (induced demand?)
- The changes in activities of people in the region
- The changes in economic activities and land use etc.
Need for research on activity-based transport network equilibrium models

Part I

Background (Objective & Motivation)
Multi-modal transit modes in Hong Kong

Over 90% of the 11 million daily person trips in Hong Kong are being served by the public transit modes.
Literature review on transit modeling

<table>
<thead>
<tr>
<th>Modeling framework</th>
<th>Methodologies</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip-based framework</td>
<td>frequency-based approach</td>
<td>Spiess and Florian (1989), De Cea and Fernandez (1993), Lam et al. (1999, 2002), Kurauchi et al. (2003), Uchida et al. (2005), Schmöcker et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>schedule-based approach</td>
<td>Wong and Tong (1998), Tong and Wong (1999), Tong et al. (2001), Nuzzolo et al. (2001)</td>
</tr>
<tr>
<td>Activity-based framework</td>
<td>mainly focus on road-based auto networks (Jones et al. 1990; Yamamoto et al. 2000; Lam and Yin 2001; Lam and Huang 2002; Huang et al. 2005); For a comprehensive review, see Kitamura (1988); Timmermans (2005). Few studies on activity scheduling behavior of transit passengers</td>
<td></td>
</tr>
</tbody>
</table>

Related books:

Lam WHK and Bell MGH (2003) *Advanced modeling for transit operations and service planning*. Amsterdam: Pergamon.

Relationship between transit timetable and passenger activity schedule

Transit schedule or timetable

Level of transit service (accessibility)

Activity-travel pattern of transit passengers

Supply side

Match

Demand side
Objectives

- Propose a **scheduling/timetabling model** of transit services in a multimodal transit network using an **activity-based approach**
- Develop a **heuristic solution algorithm** (Hooke-Jeeves method & a supply-demand equilibrium iterative method)
- **Model applications**
 1. Illustrate the **differences** between the activity-based model and the traditional trip-based model
 2. **Compare** the optimal timetables with even and uneven headways
Motivations

- Ascertain the interaction between transit timetables and passenger activity-travel choice behavior
- Generate optimal timetables for short-term transit operations and even for long-term planning of High-Speed Rail (HSR).
Research method

A bi-level modeling method

Transit timetabling problem
(Solution algorithm: Hooke-Jeeves method)

Upper level

Path/link Flow

Timetable

Passenger activity-travel choice network equilibrium problem
(Solution algorithm: equilibrium iterative method)

Lower level

An activity-based + schedule-based method
An Activity-Based Approach for Scheduling Multimodal Transit Services

Part II

Assumptions and definitions
Assumptions

- **Transit vehicles** are assumed to fully follow a scheduled timetable.
- The set of **feasible activity/trip chains** is assumed to be pre-specified.
- Trip-makers base their decisions about activity and travel schedules on a tradeoff between the **utility** derived from activity participation at different locations and the **disutility** incurred by travel between activity locations.
- **Transit fleet size** for each line is taken as given and fixed exogenously.
- The transit system operators choose **timetables** for each line that maximize the total user net utility in the system.
Network representation

Set of activity-chains:
- Home – work – home
- Home – work – restaurant – home
- Home – school – work – home
- Home – school – work – entertainment – home

Passenger-flow time-space network
Path utility

Utility of a path = activity utility – travel disutility

\[U_{pc} = U_{pc}^A - U_{pc}^T, \quad \forall p \in P_c, c \in \Omega_r, r \in R \]

Travel disutility

\[U_{pc}^T = \alpha_1 \varphi_{pc}^1 + \alpha_2 \varphi_{pc}^2 + \alpha_3 \varphi_{pc}^3 + \alpha_4 \varphi_{pc}^4 + \varphi_{pc}^5 + \varphi_{pc}^6, \quad \forall p \in P_c, c \in \Omega_r, r \in R \]

- In-vehicle time with congestion effects
- walking time
- Schedule delay cost
- fare
- waiting time
- line change penalty
Activity utility

The utility of an activity depends on the **start time** of that activity and its **duration**.

\[
MU_i(x) = U_i^0 + \frac{\sigma_i \lambda_i U_i^{\text{max}}}{\exp[\sigma_i (x - \xi_i)] \{1 + \exp[-\sigma_i (x - \xi_i)]\}}
\]

Marginal utility function

(For details, see Joh et al., 2002; Ettema and Timmermans 2003)
An Activity-Based Approach for Scheduling Multimodal Transit Services

Part III

Model formulation

—— Passenger activity-travel choice equilibrium

—— Timetabling formulation
Passenger activity-travel choice equilibrium

The nested-logit based path and chain choices:

\[
f_{pc} = q_r \Pr_{pc|r} = q_r \frac{\exp(\theta_2 U_c)}{\sum_{c \in \Omega_r} \exp(\theta_2 U_c)} \frac{\exp(\theta_1 U_{pc})}{\sum_{p \in P_c} \exp(\theta_1 U_{pc})}, \quad \forall p \in P_c, c \in \Omega_r, r \in R
\]

Total number of trip-makers:

\[
q_r = Q_r \frac{\exp(\theta_3 U_r^{\text{out}})}{\exp(\theta_3 U_r^{\text{out}}) + \exp(\theta_3 U_r^{\text{in}})}, \quad \forall r \in R
\]

Fixed-point formulation:

\[
f = q \cdot \Pr_r(\mathcal{U}(\mathcal{P}(\mathcal{I})))
\]

The hierarchical choices of individuals:

- Trip-making?
 - Yes
 - Chain choice
 - Path choice
 -
Timetabling problem

Problem description

Departure and arrival times of vehicle k from / at station m

$$
(t_{\text{dep}})_{l,m}^k, (t_{\text{arr}})_{l,m}^k
$$

$$(t_{\text{dep}})_{l,m}^k = (t_{\text{arr}})_{l,m}^k + (t_{\text{hold}})_{l,m}^k$$

Departure time = arrival time + holding time

Given the holding time, determination of a round-trip timetable for a line is equivalent to finding an arrival timetable matrix:

$$
\begin{pmatrix}
(t_{\text{arr}})_{l,1}^k & (t_{\text{arr}})_{l,2}^k & \cdots & (t_{\text{arr}})_{l,M}^k & (t_{\text{arr}})_{l,(M+1)}^k & \cdots & (t_{\text{arr}})_{l,(2M-1)}^k
\end{pmatrix}_{K \times (2M-1)}
$$
Timetabling model

Total user net utility maximization in the system (sum of utility of trip-makers and utility of non-trip-makers in the system)

\[
\max \ T\mathrm{UNU}(T) = \sum_r \sum_c \sum_p f_{pc}(T)U_{pc}(T) + \sum_r (Q_r - q_r(T))U_r^{in}
\]

Subject to

\[
f = q \cdot \mathbb{P}(U(\theta(\theta(\theta)))) \quad \text{Passenger activity-travel choice equilibrium}
\]

\[
(t_{arr})_{l,m}^k - (t_{arr})_{l,m}^{k-1} \geq h_{min}^l, \quad \forall m, k \quad \text{Minimum headway constraint}
\]

Solution procedure: **Hooke-Jeeves based heuristic + MSA based equilibrium iterative method**
An Activity-Based Approach for Scheduling Multimodal Transit Services

Part IV

Numerical study
Example 1: Comparison of activity-based model and trip-based model

Distribution of work duration of commuters for the activity-based model

Mean = 8.30 h
SD = 0.758 h

Departure flow patterns of the activity-based and trip-based models
Example 1 (cont.)

<table>
<thead>
<tr>
<th>Number of trip-makers</th>
<th>Number of teleworkers</th>
<th>Average time spent for (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Travel</td>
</tr>
<tr>
<td>Base case (I)</td>
<td>17,777</td>
<td>2,223</td>
</tr>
<tr>
<td>Case (II)</td>
<td>17,338</td>
<td>2,662</td>
</tr>
<tr>
<td>Difference (II-I)</td>
<td>-439</td>
<td>439</td>
</tr>
</tbody>
</table>

Table 2 Effects of **train timetable changes** on the number of trip-makers and **time allocation** of in-home and out-of-home activities

Base case: train headway = 10 minute; **Case (II):** train headway = 20 minutes
Example 2: Illustration for optimization of timetables

Optimal timetables with even and uneven headways

<table>
<thead>
<tr>
<th>Even</th>
<th>Metro line</th>
<th>Arrival time of transit vehicles at station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station 2</td>
<td>7:16</td>
<td>7:22 7:28 7:34 7:40 7:46 7:52 7:58 8:04</td>
</tr>
<tr>
<td>Station 3</td>
<td>7:21</td>
<td>7:27 7:33 7:39 7:45 7:51 7:57 8:03 8:09</td>
</tr>
<tr>
<td>Station 4</td>
<td>7:26</td>
<td>7:32 7:38 7:44 7:50 7:56 8:02 8:08 8:14</td>
</tr>
</tbody>
</table>

| Bus line 2 | | | | | |
| Station 1 | 7:01 | 7:13 7:25 7:37 7:49 8:01 8:13 8:25 8:37 | 8:49 9:01 9:13 9:25 9:37 9:49 |

Uneven Metro line					
Station 1	7:15	7:21 7:27 7:33 7:39 7:45 7:52 7:58 8:04	8:09 8:15 8:23 8:28 8:35 8:40 8:45 8:52 8:58 9:05 9:10		
Station 2	7:20	7:26 7:32 7:38 7:44 7:50 7:57 8:03 8:09	8:14 8:20 8:28 8:33 8:40 8:45 8:50 8:57 9:03 9:10 9:15		
Station 3	7:25	7:31 7:37 7:43 7:49 7:55 8:02 8:08 8:14	8:19 8:25 8:33 8:38 8:45 8:50 8:55 9:02 9:08 9:15 9:20		
Station 4	7:30	7:36 7:42 7:48 7:54 8:00 8:07 8:13 8:19	8:24 8:30 8:38 8:43 8:50 8:55 9:00 9:07 9:13 9:20 9:25		

| Bus line 2 | | | | | |
| Station 3 | 7:22 | 7:34 7:46 7:58 8:10 8:29 8:40 8:50 9:00 9:10 9:29 9:41 9:53 10:05 10:17 |
Distributions of individuals at different activity locations

Even-headway timetable

Uneven-headway timetable
Performance of transit system with even and uneven headways

<table>
<thead>
<tr>
<th></th>
<th>Even headway</th>
<th>Uneven headway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of total trip-makers</td>
<td>28,012</td>
<td>28,155</td>
</tr>
<tr>
<td>Passenger demand of different activity chains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H – W – H</td>
<td>6,777</td>
<td>2,002</td>
</tr>
<tr>
<td>H – S – W – H</td>
<td>1,693</td>
<td>1,119</td>
</tr>
<tr>
<td>H – W – E – H</td>
<td>6,874</td>
<td>6,467</td>
</tr>
<tr>
<td>H – S – W – E – H</td>
<td>12,668</td>
<td>18,567</td>
</tr>
<tr>
<td>Average duration of different activities (h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.75</td>
<td>0.84</td>
</tr>
<tr>
<td>W</td>
<td>8.33</td>
<td>8.46</td>
</tr>
<tr>
<td>E</td>
<td>3.12</td>
<td>3.27</td>
</tr>
<tr>
<td>H</td>
<td>11.80</td>
<td>11.43</td>
</tr>
<tr>
<td>Average waiting time (min)</td>
<td>4.78</td>
<td>2.64</td>
</tr>
<tr>
<td>Average schedule delay cost (HK$)</td>
<td>11.61</td>
<td>4.53</td>
</tr>
<tr>
<td>Total operating revenue (10^6 HK$)</td>
<td>1.07</td>
<td>1.18</td>
</tr>
<tr>
<td>Total user net utility (10^6 HK$)</td>
<td>31.02</td>
<td>31.59</td>
</tr>
<tr>
<td>Total system utility (10^6 HK$)</td>
<td>32.09</td>
<td>32.77</td>
</tr>
</tbody>
</table>

H = Home, S = School, W = Work, E = Entertainment
Conclusions

- The trip-based model may lead to a significant bias in the estimation of the passenger activity-travel pattern compared to the activity-based model.
- The type of transit headway has a significant effect on the trip-makers’ activity-travel schedules, and their use and allocation of activity time.
- A demand-sensitive timetable can offer greater benefits for both users and community than a fixed-headway timetable.
Future research

- Consider the effects of uncertainty in the supply and/or demand
- Incorporate multiple transport modes and different user classes
- Optimize the transit fleet size
- Further validate the proposed model on large-scale transit networks and calibrate the marginal utility function
- Extend the proposed model for determining the timetables of High-Speed Rail and long-distance buses
- Develop activity-based land use and transportation models etc.
Thank You

The End

The 15th HKSTSTS Conference
11-14 December, 2010, Hong Kong
http://www.hksts.org
Thank you!

Q & A

Prof. William H.K.Lam E-mail: cehklam@polyu.edu.hk