

# NETWORK EQUILIBRIUM UNDER CUMULATIVE PROSPECT THEORY WITH ENDOGENOUS STOCHASTIC DEMAND & SUPPLY

# Dr. Agachai Sumalee Hong Kong Polytechnic University

Based on the paper Sumalee et al (2009) presented at ISTTT

#### **Two-link Network**



How do drivers choose between routes with uncertain travel times?



#### Approaches





Mean Travel Time  $\Rightarrow$  Route 1

Prob Late Arrival  $\Rightarrow$  Route 2

Mean + stdDev Mean + Variance 95<sup>th</sup> Percentile of TT distribution



- Choice modellers have shown that *decisions under uncertainty* do not conform to maximising the expected benefit.
- The empirical evidence suggests two major modifications to 'Expected Utility Maximisation':
  - the carriers of value are gains/losses relative to a reference point
  - the value of each outcome is multiplied by a decision weight, not by an additive probability.

### This generalisation of EUmax is Prospect Theory

#### Context



- A traffic network has many sources of variability in demand and supply: results in Travel Time Variability.
- Drivers are aware that travel times are *uncertain* and include this TTV in their decision making.
- Senbil, M., & **Kitamura, R.**, (2004). Reference points in commuter departure time choice: a prospect theoretic test of alternative decision frames. *Journal of Intelligent Transportation Systems 8*, 19–31
- Jou, R.C., **Kitamura, R.**, Weng, M.C., Chen, C.C., (2008). Dynamic commuter departure time choice under uncertainty. Transportation Research Part A 42(5), 774-783.

assumed to reduce the likelihood of choosing that departure time. The empirical results indicate that around 20% of commuters are likely to switch their departure times and routes and most of commuters experience gains, and that preferred arrival times of commuters tend to be near their work starting times. Most importantly, it is shown that, consistent with prospect theory, commuters react asymmetrically to gains and losses.

#### **Empirical evidence**





Schedule Delay



The fundamental embodiment (and impact) of PT is through the following two transformations:





- Empirical studies show that people's preferences over final outcomes depend on the reference point from which they are judged:
- Kahneman & Tversky (1979)
- Kahneman et al (1990)
- Loewenstein & Prelec (1992)
- Bateman et al (1997)
- Dolan & Robinson (2001)
- Bleichrodt & Pinto (2002)
- Senbil&Kitamura (2004)
- Jou, Kitamura et al (2008)
- for decision under risk for choice among commodity bundles for inter-temporal choice for contingent valuation for welfare theory for multi-attribute utility for departure time choice for departure time choice



If we have a distribution of path costs  $C_k \sim N(c_k(\mathbf{x}), \sigma_k)$ It is convenient to consider the utility

$$U_{k} = U_{dest} - C_{k} = U_{dest} - c_{k} \left(\mathbf{x}\right) - \varepsilon_{k}$$





# Applying the CPT Transforms



#### Weighting Function Maps Probabilities



# Prop of

#### **CPT** Transformations









#### CPV for continuous distribution of outcomes

$$cpv = \int_{u_0}^{\infty} -\frac{dw(1-F_U(u))}{du} \cdot g(u)du + \int_{-\infty}^{u_0} \frac{dw(F_U(u))}{du} \cdot g(u)du$$

 $F_U(u)$  = Path Utility CDF (the outcome distribution)

$$g(.)$$
 = Value Function

- w(.) = Weight Function
- $u_0$  = Reference Point

## **Two-link Network**



How do drivers choose between routes with uncertain travel times?



Choose between alternatives according to CPV

# CECE O

# **Making Variability Endogenous**

# • Part B Paper

- Stochastic link travel times with exogenously defined distribution
- Reference point (and other CPT parameters) assumed
- Compute equilibrium: show dependence on RefPt and other parameters
- Extension here to endogenize variability
  - Stochastic OD demand...
  - ...split into path flows via ratio of means f/q hence stochastic path flows
  - Gives rise to stochastic link flows (with correlations)
  - Independently stochastic link capacities
  - Can compute resulting stochastic travel times (with correlations)
  - CPT applied to route choice



Lognormal Demand  $Q \sim LN(\mu,\sigma)$  with mean qSplit Q into path flows  $F_k = (f_k/q) \cdot Q$ Where  $f_k$  is mean flow on path k

Path Flows Lognormal Distributed  $F_k \sim LN(\mu_k, \sigma_k)$ 

Conservation condition on means:  $q = \sum_{k} f_{k}$ Gives stochastic, correlated link flows.



Link capacities are assumed to be independent random

variables

$$T_1 = t_a^0 + b_a \left(\frac{X_a}{C_a}\right)^{n_a}$$

With  $C_a \sim LN(\mu_{ca}, \sigma_{ca})$  and independent of  $X_a$ 

We therefore have non-trivial covariance matrices for link flows and link travel times.

Path costs arise from standard link-additive model.

BUT CPV is not link-additive!



With  $cpv_k(x)$  the flow dependent CPV on route *k* we have that (demand feasible) **f**\* is a CPV-UE if and only if:

$$\mathbf{cpv}(\mathbf{f}^*)^T(\mathbf{f}-\mathbf{f}^*) \le 0 \quad \forall \mathbf{f} \in F$$

 $\min_{\mathbf{f}\in\Omega}\left\{G(\mathbf{f})\right\}$ 

$$G(\mathbf{f}) = \max_{\mathbf{g} \in \Omega} \left( \mathbf{cpv}(\mathbf{f})^T \cdot \mathbf{g} - \mathbf{cpv}(\mathbf{f})^T \cdot \mathbf{f} \right)$$

### Equilibrium assignment algorithm



- Generate path set. Find initial feasible mean path flow **f**
- Compute travel time distribution for each path.
- Compute prospect value for each path & find 'best' path
- Assign mean OD flow to best path; gives auxiliary flow **g**
- Step from **f** toward **g** (as in MSA)
- Test convergence

# Prop o

#### Nguyen and Dupuis Network

#### **OD demand (CoV)**











| OD       | OD    | Path | Link         | PV     | Flow     |     | Travel time |       |
|----------|-------|------|--------------|--------|----------|-----|-------------|-------|
| movement | pair  |      | sequence     |        | Expected | SD  | Expected    | SD    |
| 1        | (1,2) | 1    | 2-18-11      | 49.188 | 685      | 137 | 61.578      | 5.090 |
|          |       | 2    | 1-5-7-9-11   | 49.144 | 150      | 30  | 63.680      | 4.784 |
|          |       | 3    | 1-5-7-10-15  | -      | -        | -   | -           | -     |
|          |       | 4    | 1-5-8-14-15  | -      | -        | -   | -           | -     |
|          |       | 5    | 1-6-12-14-15 | -      | -        | -   | -           | -     |
|          |       | 6    | 2-17-7-9-11  | -      | -        | -   | -           | -     |
|          |       | 7    | 2-17-7-10-15 | 49.123 | 165      | 33  | 64.000      | 4.729 |
|          |       | 8    | 2-17-8-14-15 | -      | -        | -   | -           | -     |
| 2        | (4,2) | 9    | 4-12-14-15   | 40.976 | 310      | 62  | 67.106      | 6.154 |
|          |       | 10   | 3-5-7-9-11   | 40.967 | 411      | 82  | 68.130      | 6.086 |
|          |       | 11   | 3-5-7-10-15  | 40.928 | 294      | 59  | 68.621      | 6.057 |
|          |       | 12   | 3-5-8-14-15  | 40.970 | 169      | 34  | 68.398      | 6.067 |
|          |       | 13   | 3-6-12-14-15 | 40.965 | 316      | 63  | 68.675      | 6.048 |
| 3        | (1,3) | 14   | 1-6-13-19    | 23.643 | 351      | 88  | 60.576      | 4.516 |
|          |       | 15   | 1-5-7-10-16  | 23.626 | 10       | 0   | 61.846      | 4.062 |
|          |       | 16   | 1-5-8-14-16  | 23.660 | 95       | 24  | 61.623      | 4.136 |
|          |       | 17   | 1-6-12-14-16 | -      | -        | -   | -           | -     |
|          |       | 18   | 2-17-7-10-16 | 23.649 | 243      | 61  | 61.675      | 4.121 |
|          |       | 10   | 2 17 8 14 16 | 23 650 | 101      | 25  | 61 452      | 4 206 |











## Summary



- Cumulative Prospect Theory as paradigm for route choice with stochastic travel times.
- Continuous formulation of cumulative prospect theory presented.

Equilibrium condition defined.

Potential future studies:

- Solve for equilibrium efficiently and consider larger networks
  - Path based criterion so needs thought
- Network inference (estimation) from the observed link/path data
- Investigate impact of assuming CPV over E[Umax] or 'reliability' terms
  - How is UE recovered from CPV in the limit?
- Define reference point via a day-to-day learning process?
  - Initial reference point updated by experience, new alternatives added to choice set as reference point changes?
  - Does this converge? To a sensible solution? Is this process stable?