Carpooling and Congestion Pricing:

HOV and HOT Lanes

Hideo Konishi (Boston College) and Se-il Mun (Kyoto University)

Paper is available at http://www.econ.kyoto-u.ac.jp/~mun/papers/hovhot2010209withfigures.pdf

Prof. Kitamura inspired us to do this work (not consciously)

自動車による混雑や汚染などの社会的費用に応じて 道路利用の価格づけを行い「混雑料金」を賦課する ロード・プライシングに関するわが国初の研究書。 英国・米国・シンガポール・韓国の事例を 紹介しながら、ロード・プライシングの考え方の 基礎にある混雑料金の理論を解説し、 その具体的な応用を示す。 終章 ロード・プライシングの適用可能性をめぐって (座談会)

加者	太田	勝敏
	北村	隆一
	松澤	俊雄
	山田	浩之 (司会)

283

1. はじめに: ロード・プライシングへの関心の高まり

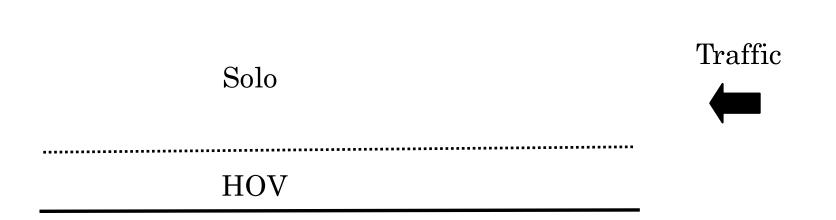
山田:この数年間,日本交通政策研究会の研究プロジェクトで「自動車交通と 都市交通政策」というテーマで共同研究をして参りました。研究会で,大都市 の道路交通問題,とくにその混雑問題をいかに解決すべきかについて,いろい ろな勉強をしてきましたが,私たちの研究の中心は,ロード・プライシングす なわち混雑料金の問題に収束してきました。というのは,最近,世界的にロー ド・プライシングが非常に注目を浴びており,研究も大きく進展してきたから です、大都市では,混雑のはげしい中心部ほど道路投資をすすめることが困難

Carpooling and Congestion Pricing:

HOV and HOT Lanes

Hideo Konishi (Boston College) and Se-il Mun (Kyoto University)

Paper is available at http://www.econ.kyoto-u.ac.jp/~mun/papers/hovhot2010209withfigures.pdf


Road pricing affect travel behavior

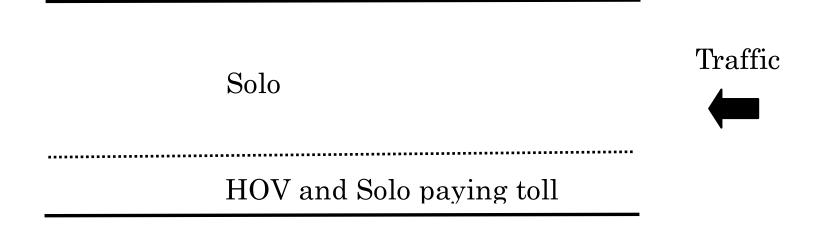
- Trip generation
- Trip length (destination choice)
- Modal choice
- Route choice
- Departure time

• HOV or solo (Our paper)

HOV lanes – High Occupancy Vehicle lanes

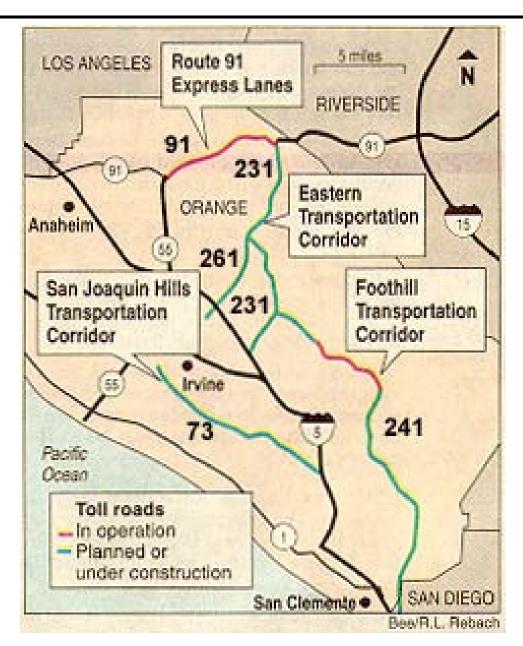
- HOV lanes reserved for high occupancy vehicles only
- regular lanes for solo cars will be more crowded
- incentives for carpooling total number of cars on road is reduced

Why do we care?


- In the US (US Census Bureau, 2000),
 - 77% of commuters are solo drivers
 - 4.7% use mass transit
 - 12.2% are carpoolers (important!)
- Criticisms
 - HOV lanes are underused --- likely to increase the social cost
 - 43% of carpoolers are family members
 - HOV lanes shift travelers from vanpools to carpools

HOT lanes

High Occupancy Toll lanes


• HOV lanes are open to HOVs for free,

and to solo cars if tolls are paid.

High Occupancy Toll (HOT) lanes

- Supported by the US *Value Pricing Pilot Program* for innovative road and parking pricing measures for alleviating congestion (<u>http://www.valuepricing.org</u>)
 - traffic of regular lanes is eased (HOV lanes are underused)
 - revenue is generated
 - politically feasible policy
 - but incentives for carpooling are weakened
- Six operating facilities to date: State Route 91 in Riverside County, California Interstate 15 (I-15) north of San Diego Katy and Northwest Freeways in Houston, Texas Interstate 394 (I-394) in Minneapolis Interstate 25 (I-25) in Colorado

http://www.91expresslanes.com

Toll structure

- According to timetable. Tolls change hourly with different schedules for each day of the week →
- HOV3+ can use toll lanes free except at peak times (50% discount)

Tolling technology

- Smartcards with pre-purchased credit
- Enforcement: cameras to photograph license plates

9 Express Lanes		Toll Schedule Effective April 1, 2007			Eastbound SR-55 to Riverside Co. Line		
	Sun	м	Ти	w	Th	F	Sat
Midnight	1.15	1.15	1.15	1.15	1.15	1.15	1.15
1:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
2:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
3:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
4:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
5:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
6:00 am	1.15	1.85	1.85	1.85	1.85	1.85	1.15
7:00 am	1.15	1.85	1.85	1.85	1.85	1.85	1.15
8:00 am	1.50	1.85	1.85	1.85	1.85	1.85	1.85
9:00 am	1.50	1.85	1.85	1.85	1.85	1.85	1.85
10:00 am	2.30	1.85	1.85	1.85	1.85	1.85	2.30
11:00 am	2.30	1.85	1.85	1.85	1.85	1.85	2.30
Noon	2.70	1.85	1.85	1.85	1.85	2.80	2.70
1:00 pm	2.70	2.55	2.55	2.55	2.80	4.35	2.70
2:00 pm	2.70	3.70	3.70	3.70	3.80	4.35	2.70
3:00 pm	2.30	3.95	3.95	4.95	4.95	<i>9.25</i>	2.70
4:00 pm	2.30	6.65	8.00	8.50	<i>9.25</i>	9.50	2.70
5:00 pm	2.30	6.65	8.50	8.50	9.25	8.00	2.70
6:00 pm	2.30	3.95	5.45	4.95	5.75	4.75	2.30
7:00 pm	2.30	2.80	2.80	2.80	4.00	4.40	1.85
8:00 pm	2.30	1.85	1.85	1.85	2.55	4.00	1.85
9:00 pm	1.85	1.85	1.85	1.85	1.85	2.55	1.85
10:00 pm	1.15	1.15	1.15	1.15	1.15	1.85	1.15
11:00 pm	1.15	1.15	1.15	1.15	1.15	1.15	1.15

9 Express		Toll Schedule Effective April 1, 2007		Westbound Riverside Co. Line to SR-55			
	Sun	м	Tu	w	Th	F	Sat
Midnight	1.15	1.15	1.15	1.15	1.15	1.15	1.15
1:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
2:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
3:00 am	1.15	1.15	1.15	1.15	1.15	1.15	1.15
4:00 am	1.15	2.20	2.20	2.20	2.20	2.20	1.15
5:00 am	1.15	3.60	3.60	3.60	3.60	3.45	1.15
6:00 am	1.15	3.70	3.70	3.70	3.70	3.60	1.15
7:00 am	1.15	4.05	4.05	4.05	4.05	3.95	1.60
8:00 am	1.60	3.70	3.70	3.70	3.70	3.60	1.85
9:00 am	1.60	2.95	2.95	2.95	2.95	2.95	2.30
10:00 am	2.30	1.85	1.85	1.85	1.85	1.85	2.30
11:00 am	2.30	1.85	1.85	1.85	1.85	1.85	2.60
Noon	2.30	1.85	1.85	1.85	1.85	1.85	2.60
1:00 pm	2.60	1.85	1.85	1.85	1.85	1.85	2.60
2:00 pm	2.60	1.85	1.85	1.85	1.85	1.85	2.60
3:00 pm	2.60	1.85	1.85	1.85	1.85	2.30	2.60
4:00 pm	2.75	1.85	1.85	1.85	1.85	2.30	2.75
5:00 pm	2.75	1.85	1.85	1.85	1.85	2.30	2.75
6:00 pm	2.75	1.85	1.85	1.85	1.85	2.70	2.30
7:00 pm	2.30	1.15	1.15	1.15	1.15	1.85	1.85
8:00 pm	2.30	1.15	1.15	1.15	1.15	1.15	1.15
9:00 pm	2.30	1.15	1.15	1.15	1.15	1.15	1.15
10:00 pm	1.15	1.15	1.15	1.15	1.15	1.15	1.15
11:00 pm	1.15	1.15	1.15	1.15	1.15	1.15	1.15

Our paper

We use a simple model to compare the following five policies

- 1. regular lanes only
- 2. HOV lanes
 - Is introducing HOV lanes social-cost reducing?
- 3. HOT lanes
 - Is converting HOV lanes to HOT lanes social-cost reducing?
- 4. uniform congestion pricing (evey car pays the same toll)
 - Conventional policy along the line of Pigou, but is it superior to other policies?
- 5. differential congestion pricing with HOV lanes (HOV/HOT lanes + regular lane toll)
 - Optimal policy under lane division.

Earlier works

- Yang and Huang (1999)
 - fixed cost for carpooling
 - not considered HOT policy
- Small et al (2006), Safirova, et al (2004)
 - numerical simulations based on discrete choice models
 - welfare effects are generally unknown

The Model

- All commuters must commute from the suburb to the CBD via a highway
- unit mass of commuters
- Commuters differ in their carpooling organization costs $t \in [0,1]$
- Distribution function of is F(t) for [0,1] with F(0) = 0 and $\lim_{t\to 1} F(t) = 1$ Density function: f(t)
- Highway lanes can be divided into two groups, α and β $K_{\alpha} + K_{\beta} = 1$, where K_i is capacity of lanes
- Commuters sort over two groups of lanes (if lanes are divided): $n_{\alpha} + n_{\beta} = 1$

• Congestion cost , ,

 $C(q) \ge 0$, $C'(q) \ge 0$, and $C''(q) \ge 0$ for all

where is the number of cars in type lanes

• a type commuter's total cost by using type lane $C(q_i) + t + \tau_i$, if carpooling $C(q_i) + \tau_i$, if driving solo

 $(\mathbf{1}_{l}, \mathbf{1}_{l}, \mathbf{1}_{l}, \mathbf{1}_{l}, \mathbf{1}_{l})$

where τ_i is toll of type lanes

Regular Lanes only (No policy)

- No lane distinction, no toll
- There is no incentive for carpooling
 - if carpooled, then $C(\cdot) + t$
 - if solo, then $C(\cdot)$
- Thus, every lane has per lane traffic 1 everybody pays C(1)

HOV Lanes

- α lanes are HOV lanes (with *m* commuters in a car), while β lanes are regular lanes
- no toll
- If type \overline{t} is indifferent between α and β lanes, then commuters with $t \le \overline{t}$ use α lanes and the ones $t > \overline{t}$ use β lanes
- Thus, $q_{\alpha} = \frac{Q_{\alpha}}{K_{\alpha}} = \frac{F(\overline{t})/m}{K_{\alpha}}$ and $q_{\beta} = \frac{1-F(\overline{t})}{K_{\beta}}$
- Type \overline{t} is indifferent

$$C(q_{\alpha}) + \overline{t} = C\left(\frac{F(\overline{t})}{mK_{\alpha}}\right) + \overline{t} = C\left(\frac{1 - F(\overline{t})}{K_{\beta}}\right) = C(q_{\beta})$$

• Equilibrium solution: \overline{t}^{HOV}

HOT lanes

- Lane α
 - n_{α}^{cp} carpoolers $(=F(\overline{t}^{HOT}))$ n_{α}^{s} solo drivers paying toll(= τ)
- Lane β

$$1 - n_{\alpha}^{cp} - n_{\alpha}^{s}$$
 solo drivers

Equilibrium conditions with HOT lanes

• HOV user \overline{t}^{HOT} is indifferent between HOT and regular lanes

$$C\left(\frac{F\left(\overline{t}^{HOT}\right)}{mK_{\alpha}} + \frac{n_{\alpha}^{s}}{K_{\alpha}}\right) + \overline{t}^{HOT} = C\left(\frac{1 - F\left(\overline{t}^{HOT}\right) - n_{\alpha}^{s}}{K_{\beta}}\right)$$

• Solo drivers are indifferent between HOT lanes with paying toll and regular lanes

$$C\left(\frac{F\left(\overline{t}^{HOT}\right)}{mK_{\alpha}} + \frac{n_{\alpha}^{s}}{K_{\alpha}}\right) + \tau = C\left(\frac{1 - F\left(\overline{t}^{HOT}\right) - n_{\alpha}^{s}}{K_{\beta}}\right)$$

• Thus, we have

$$\overline{t}^{HOT} = \tau.$$

Equilibrium under HOT is obtained by solving $C\left(\frac{F(\tau)}{mK_{\alpha}} + \frac{n_{\alpha}^{s}}{K_{\alpha}}\right) + \tau = C\left(\frac{1 - F(\tau) - n_{\alpha}^{s}}{K_{\alpha}}\right)$

for n_{α}^{s}

21

Is converting HOV lanes to HOT lanes cost-reducing?

- If toll is very high, no solo car uses HOT lanes.
- Solo car users use HOT lanes if toll rate τ is less than the critical value \overline{t}^{HOV} , where \overline{t}^{HOV} is the indifferent type between two types of lanes before HOV lanes are converted to HOT lanes.
- A sufficient condition to check if HOT conversion is social costreducing is to check if social cost would be reduced by reducing toll rate τ from \overline{t}^{HOV} slightly.

The aggregate social cost with HOT lanes

Comparing policies: A Special Case

- F(t) = t uniform distribution over [0,1].
- C(q) = cq constant marginal congestion cost

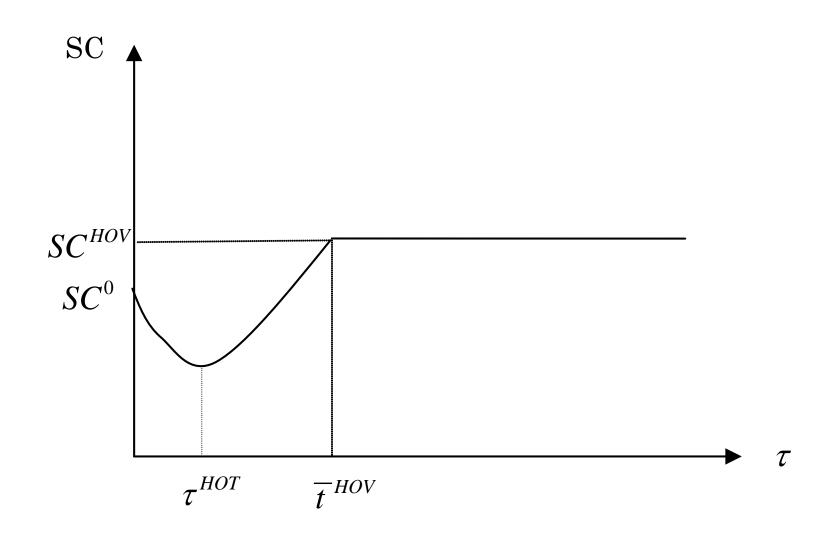


Fig.1A: Social cost may be reduced by converting HOV lane to HOT lane. Introducing HOV lane increases the social cost, i.e., $SC^{HOV} > SC^{0}$

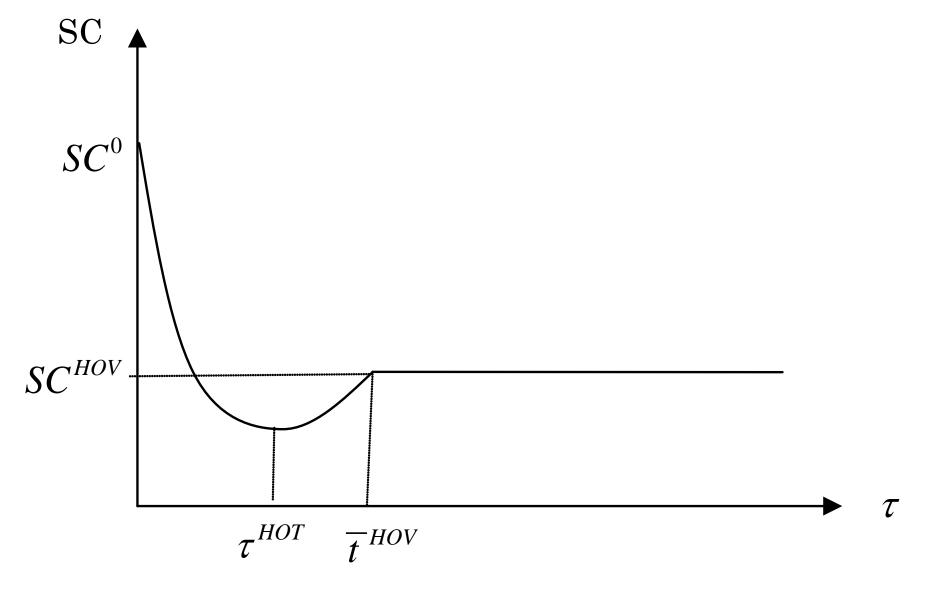


Fig.1B: Social cost may be reduced by converting HOV lane to HOT lane. Introducing HOV lane reduces the social cost, i.e., $SC^{HOV} < Sc_6^{O}$

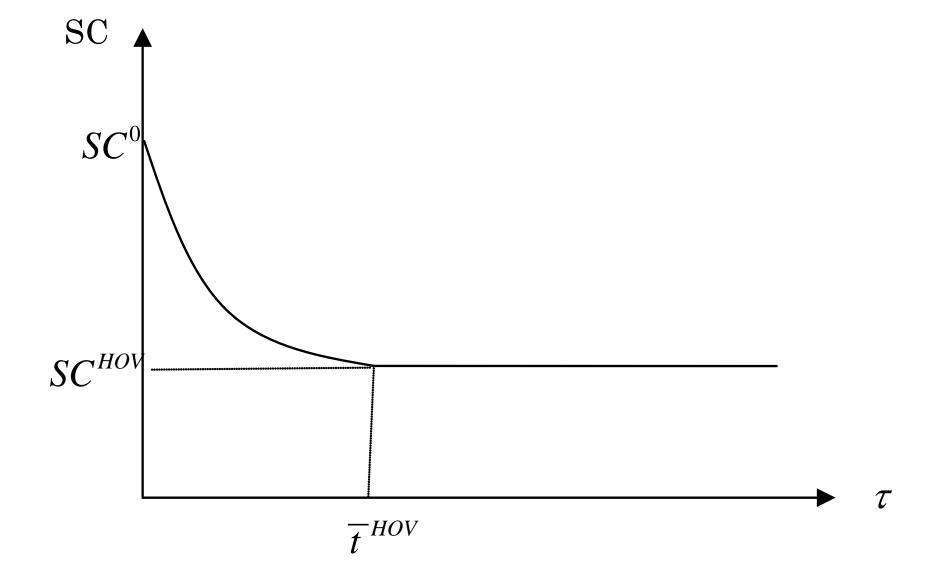


Fig.1C:Converting HOV lane to HOT lane increases the social cost.Introducing HOV lane reduces the social cost, i.e., $SC^{HOV} < SC^0$

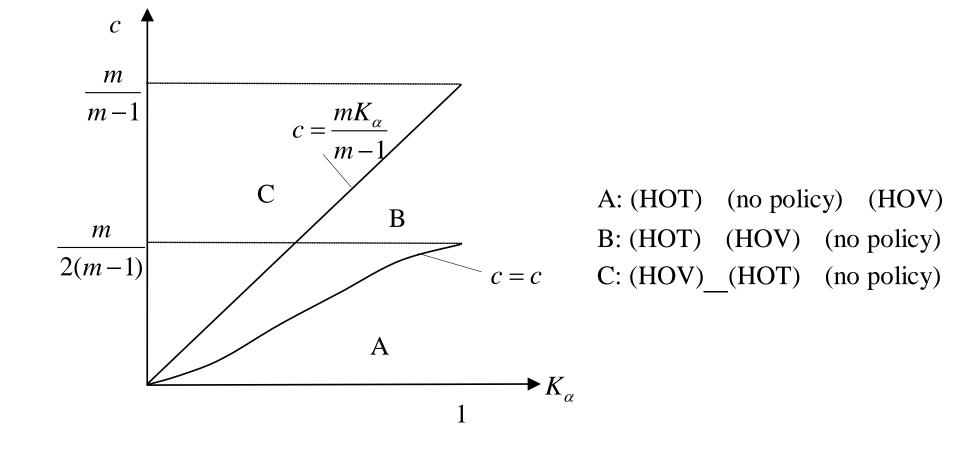
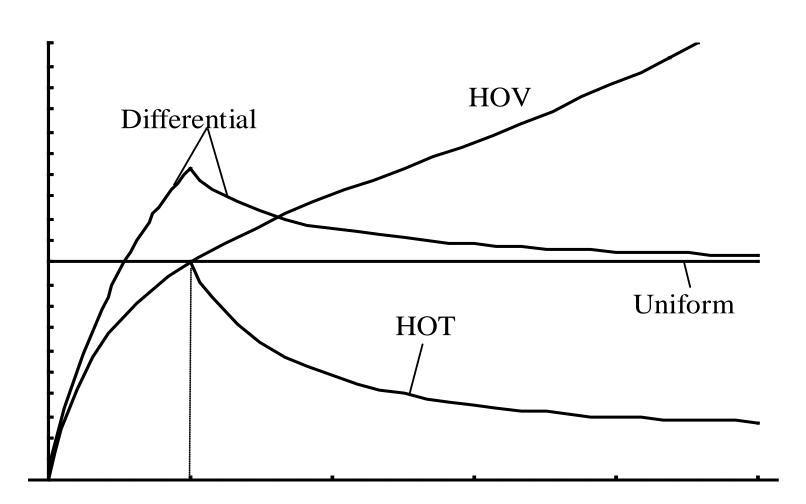


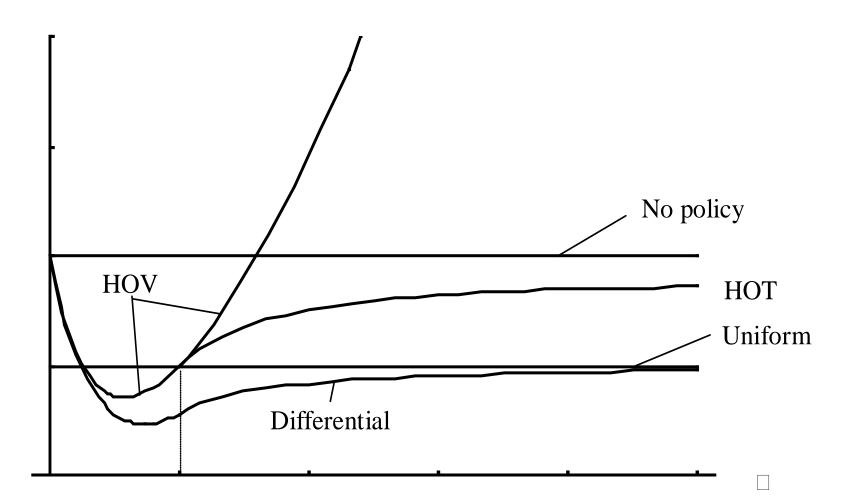
Figure 2 Parameters and welfare ranking of HOV and HOT

Welfare-ranking of "no policy", "HOV lanes", and "HOT lanes" dependent on parameter values of K_{α} and c.

- If K_{α} is very high relative to *c*, then (*HOT*) (*no policy*) (*HOV*)
- If K_{α} is moderately high relative to *c*, then (*HOT*) (*HOV*) (*no policy*)
- If K_{α} is not high relative to *c*, then (*HOV*)_(*HOT*) (*no policy*)


Alternative Pricing Policies

- Uniform Congestion Pricing(UCP)
 - no lane division, all vehicles pay


- Differential Congestion Pricing(DCP)
 - Carpoolers:free
 - Solo on α lanes pay τ_{α}
 - Solo on β lanes pay τ_{β}

Welfare Ranking among Alternative Policies

- Same specifications F(t) = t, C(q) = cq• and $K_{\alpha} = 0.2$ (1 of 5 lanes) (Share of car-pooling =0.130)
- Social cost under alternative policies for each value of HOV HOT Uniform pricing Differential pricing

Figure 4 Aggregate social costs under alternative policies

<u>Summary</u>

- One of the simplest possible models
- HOV can be better or worse than no policy
- HOT can be better or worse than HOV
- Uniform pricing is not necessarily good: can be dominated by HOV
- DCP attains the first-best outcome: unlike HOT, toll should be charged on regular lanes