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Abstract 

If bus service departure times are not completely unknown to the passengers, non-uniform passenger arrival patterns can be 

expected. We propose that passengers decide their arrival time at stops based on a continuous logit model that considers the 

risk of missing services. Expected passenger waiting times are derived in a bus system that allows also for overtaking between 

bus services. We then propose an algorithm to derive the dwell time of subsequent buses serving a stop in order to illustrate 

when bus bunching might occur. We show that non-uniform arrival patterns can significantly influence the bus bunching 

process. With case studies we find that, even without exogenous delay, bunching can arise when the boarding rate is insufficient 

given the level of overall demand. Further, in case of exogenous delay, non-uniform arrivals can either worsen or improve the 

bunching conditions, depending on the level of delay. We conclude that therefore such effects should be considered when 

service control measures are discussed. 

 

 

1. Introduction 

Service irregularities increase passenger waiting times, decreasing the attractiveness of public transport. The 

more the passengers can trust the service schedule, the better they can time their arrival at stops. Whereas under 

completely random service arrivals the passengers can also do no better than “randomly” arrive at stops, in many 

cases at least some coherence of the actual arrivals with the service schedule might be expected. Therefore, even 

if the schedule might not be known to all passengers and uncertainties in the access time to the stop are considered, 

non-uniform passenger arrival patterns can be expected. With a few exceptions, the effect of such non-uniformity 

on bus loads has been largely ignored in the literature and is the topic of this contribution.  

We propose a “mixed behaviour”: Passengers consider the likely service departure times and leave some safety 

margins in order to ensure that they do not have to wait too long for a bus but also minimise the chances of missing 

a service. Such a behaviour seems reasonable for passengers in cities with fairly good bus services. As a motivating 

example familiar to the authors, consider the bus stop in front of Kyoto University. The stop is close to the office 

buildings and the most frequent service arrives around every 15 minutes during the evening hours. Some 

passengers, possibly those without knowledge of the schedule, will arrive randomly though the bulk of passengers 

will time their arrival to 2-3 minutes before scheduled service arrival. Some “risky” passengers, or those delayed 

by for example waiting times at the elevator, will arrive even closer to the scheduled departure.  
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In general, it is well known that passenger arrival is influenced by service characteristics, such as average value 

of headways and headway deviations. In particular, it is commonly accepted that passengers tend to arrive closer 

to the scheduled departure time (i.e., their arrivals are not uniform) when the headways are large. This behaviour 

is oftern termed as scheduled-based arrival behaviour. Bowman and Turnquist (1981) provide a model of 

passenger arrival behaviour, which links the arrival distribution to the characteristics of the service, including its 

reliability. 

Therefore a good understanding of arrival patterns is the foundation to modelling boarding demand. Deriving 

bus loads are important to estimate potential capacity bottlenecks and possibly revenue splits among bus operators. 

Furthermore, bus loads and bus service dwell times at stops are closely correlated, and unexpected high loads can 

lead to the well-known “bus bunching” process. The seminal work of Newell and Potts (1964) presents a simplified 

model of the phenomenon, which casts light on some causes. However, their model does not provide a realistic 

representation of bunching as they neglect aspects such as en-route service perturbations, transport operator 

policies concerning holding and overtaking as well as complex network features such as the presence of “common 

lines” among which some of the passengers at a stop might choose. Some of these issues have been dealt with in 

later literature as reviewed in more detail in the next section.  

Newell and Potts further assume uniform passenger arrival. In the above Kyoto bus stop example this might 

overestimate the bunching phenomena as only a few additional passengers arrive in the time interval between the 

scheduled and actual service departure and hence delayed buses have to board fewer additional passengers than 

predicted with uniform arrival. Furthermore, Newell and Potts do not capture the effect of severe bunching where 

buses might be overtaken. 

The contributions of this paper are twofold. Firstly, a model of passenger arrival extending the approach of 

Bowman and Turnquist (1981) to allow for overtaking between buses at a stop. We refer to our model as the 

“reliability-based arrival pattern model” in line with the above example. Secondly, we include these passenger 

arrival patterns in a model of bus propagation, highlighting causes of bunching which are not identified by Newell 

and Potts. 

In line with above discussion, our model will be mainly applicable to situations in which passengers consider 

timetables in deciding their arrival at stops. It is conventionally accepted that timetables influence passengers 

decisions for services with expected headways of more than 10 minutes and that, instead, if service headways are 

shorter, uniform passenger arrival patterns can be expected. Actually the threshold between schedule-dependent 

and uniform passenger arrival can be lower than the conventional one. A review of existing studies on the relation 

between service headway and passenger arrival at stops is provided by Luethi et al. (2006). Interestingly, this study 

finds that passengers consult schedules even when the headway is 5 minutes. We consider the topic discussed in 

this paper especially of topical importance due to the increasing presence of service schedule information to 

passengers before arrival at a stop even for passengers unfamiliar with the network due to online availability of 

journey planners. More and more cities now provide real-time information (RTI) for passengers. RTI changes the 

“visibility of the network” and hence passenger behaviour. For instance, it is reasonable to expect that ubiquitous 

RTI on departure time (accessed by internet and/or mobile phone apps) induces non-uniform passenger arrivals 

also for short headways and irregular services.  

The reminder of this paper is organized as follows: Section 2 provides a more detailed review of the two key 

references for this paper, Newell and Potts (1964) and Bowman and Turnquist (1981) as well as further related 

and newer literature. Section 3 then introduces the notation that is utilized in later sections. Section 4 describes the 

passenger arrival model and Section 5 the bus propagation model. Section 6 illustrates both models through case 

study applications before Section 7 concludes this paper. 

2. Literature Review 

Bus bunching is generally defined as the effect of two successive services of a single line arriving at stops with 

shorter than scheduled headways. The effect occurs by the first service being delayed at previous stops due to 

unplanned long boarding times, or being delayed en-route by unforeseen traffic congestion. The subsequent 

service then has to pick up fewer passengers at that stop and departs earlier than scheduled. At downstream stops, 

the effect is further emphasised as the initial delay to the first vehicle and the early arrival of the subsequent 

service result in increasingly longer dwell times for the first bus and increasingly shorter dwell times for the 

second bus. 

Bus bunching has a direct negative impact on the passengers as it leads to, on average, longer dwell-times. 

Quarmby (1967) already found that transit passengers value their time waiting two to three times more than their 

time on board travelling. Subsequent literature has confirmed this, sometimes reporting even higher disutility 

associated with waiting. Using a stated-preference survey, Hollander and Liu (2008) found that bus passengers 



value service reliability four times higher than they do to mean travel time. Hollander et al. (2007) further 

demonstrate that bus unreliability has a significant impact on passengers’ response in their departure-times. 

Bus bunching is a common feature in urban public transport, and a long-standing problem facing the bus/transit 

service providers and academic researchers alike. The bunching effect on a single line has been first analytically 

described by Newell and Potts (1964). Assuming that travel times between stops are identical and that passenger 

loads are constant, Newell and Potts show that if the passenger arrival rate at a stop is larger than half the loading 

rate of buses the bunching effect occurs for small perturbations in the original schedule. If the ratio (referred to 

below as ρ-ratio) is smaller, the system can recover from perturbations. Furthermore, bus bunching is more noted 

in high frequency services, where the headway between buses is small and the delay to headway ratio is more 

likely exceeding the threshold for a localised bus bunching to amplify (rather than being damped) further down 

the route. Recently, Schmöcker et al. (2015) extended the bunching research to a route section served by two lines 

with high frequency so that some passengers might board “whichever line comes first”. They show therefore how 

bunching can spread to initially unaffected lines but also how a line serving similar stops can help with service 

recovery on the initially affected line.  

There has been a significant body of research designing operational strategies to address the bus bunching 

problem. In particular, holding strategies of early buses as well as strategies to keep minimum distances between 

subsequent services have been analysed and shown to be successfully applied in literature. The holding strategies 

are implemented through building slacks in the schedule at key timing points and holding buses at these points to 

keep them to schedule (e.g. Osuna and Newell, 1971; Newell, 1974; Hickman, 2001; Xuan et al., 2011; Cats et 

al., 2012).  

Due to the complexity of the problem, most of the analytical studies involved having just one controlled timing 

point. Hickman (2001) developed a simulation approach to solve the bus bunching problem through optimal 

holding points. These are static holding solutions, which do not respond to dynamical changes in the actual bus 

performances on the day. Eberlein et al. (2001) developed a model for dynamical bus holding which take real-

time information on bus headways into consideration and achieves to minimise passenger waiting time. The model 

assumes deterministic passenger demand and bus travel times between stops. Daganzo (2009) developed a more 

systematic approach for dynamical holding analysis with real-time bus performance information. Daganzo’s 

method is able to consider holding at multiple timing points, therefore providing opportunity for return to schedule 

for long bus routes. In addition, the model takes into account random effects, such as the random variations in bus 

travel time, bus dwell time and passenger demand, making it resemble more realistically to real-life situations. 

Daganzo and Pilachowski (2011) proposed an adaptive bus control scheme based on a two-way bus-to-bus 

cooperation, where a bus adjusts its speed to both its front and rear headways. They show that the scheme yields 

significant improvements in bus headways and bus travel time. Moving away from the traditional ideal of schedule 

and a prior target headway, Bartholdi and Eisenstein (2012) proposed a self-coordinating method to equalise bus 

headway, while Pilachowski (2009) proposed to use GPS data to counteract the cause of the bunching directly by 

allowing the buses to cooperate with each other and to determine their speed based on relative position. Using a 

dynamic simulation approach to model the stochastic nature of the transport networks, Hadas and Ceder (2010) 

examined a range of operational tactics to improve bus service reliability. Muñoz et al. (2013) compared the 

performance of dynamic bus control strategies under different scenarios of bus capacity, service frequency and 

passenger load profiles. Most of the existing studies are concerned with a simplified bus system, notably with a 

single line, fixed service frequency, constant passenger flows, and no bus overtaking. Newell and Potts (1964), 

for instance, assume fixed frequency, constant dwell times, equal-distance stops and equal-travel time between 

stops, and that buses cannot overtake. In real-life situations these simplifying assumptions obviously might not 

hold. Boyd (1983) presented empirical evidence that demonstrated the impact of variability in bus journey time 

on bunching. Nagatani (2001) shows a strong relationship between bus delay and the passenger number on bus, 

and proposes skipping a bus stop as a way of keeping to schedule. Liu et al (2013) studied the bus stop-skipping 

scheme considering random travel time. Recently, Nesheli and Ceder (2014) introduced the concept of skip-a-

segment in addition to skip a stop. In general, bus corridors operating multiple lines that interact through sharing 

passengers and bus stops are considered complex scenarios for most of the existing analytical studies (Daganzo 

and Pilachowski, 2011). 

Another significant simplification in the existing studies that was mentioned in the introduction is the 

assumption of a uniform passenger demand distribution over time and space. This hypothesis of random passenger 

arrivals is common in models of public transport. When the randomness of the bus arrival at stops is taken into 

consideration, a model of passenger arrivals is needed to compute the waiting time and so the overall journey 

time. In networks with frequent transit services and no ubiquitous real time information, models based on the 

random incidence assumption can be justified: in fact passengers may not consider schedules if they know that 

their waiting time for the next service will be low in any case. As shown for instance in Larson and Odoni (1981), 

under the assumption of passenger random arrival, the waiting time expectation can be easily derived from the 



first and second moment of the bus arrival distribution. Random incidence is assumed in most of the literature on 

frequency-based route choice and assignment, notably in the seminal work of Spiess and Florian (1989) when 

deriving “optimal strategies”. The assumption can be still retained when passengers have access to real time 

information but only once they have reached a stop, as considered by Gentile et al. (2005). Conversely, passenger 

arrival distributions can be expected not to be uniform when real time information is available to passengers even 

before they go to a stop. With the increasing diffusion of internet-based information and smart phones, this 

scenario is becoming more and more common in many cities around the world. It can be anticipated that 

passengers who know the predicted bus departure times in advanced will try to coordinate their arrival with that 

of the next attractive bus. Watkins et al. (2011) observed a reduction of the actual waiting time from 11 to 9 

minutes for passengers of King County Metro using information disseminated by internet. Clearly real time 

information is not perfectly reliable: bus arrival prediction normally entails information about the current position 

of transit vehicles and the use of models to predict the travel time to downstream stops. Both these elements are 

affected by uncertainty (see for instance Crout, 2007).  

Liu and Sinha (2007) have further confirmed the non-uniformity of demand. They collected data on bus travel 

time, dwell time, and passenger boarding and alighting along a commuter bus route in the city of York, in England. 

Significant variations of demand (boarding and alighting) were detected both across bus stops and over time. 

Building their observed data into a microsimulation model of the bus corridor, Sorratini et al. (2008) showed that 

the variability of the passenger demand distribution has the most significant impact on bus reliability measures. 

Based on this empirical evidence therefore it appears reasonable to argue that passenger decision making 

contemplates the overall system reliability deriving from the combination of the transport service reliability and 

the information system accuracy. A model in which some “schedule-aware” passengers choose their arrival 

considering system reliability was put forward by Bowman and Turnquist (1981). In their model, the passenger 

arrival pattern at a bus stop is described by a continuous logit function. The utility function depends on the 

expected waiting time calculated by averaging waiting times over all possible bus arrival times for a specific 

passenger arrival time, i.e. 

 

𝐸(𝑊(𝑡)) = [1 − 𝑃(𝑡)]𝑊(𝑡) + 𝑃(𝑡)𝑊′(𝑡) (1) 

where 𝐸(𝑊(𝑡)) is the expected waiting time, 𝑃(𝑡) the probability that the intended bus is missed by a passenger 

arriving at 𝑡, 𝑊(𝑡) the expected waiting time in case the intended bus arrives after 𝑡 and 𝑊′(𝑡) the expected 

waiting time in case the bus has departed before 𝑡. Bowman and Turnquist provided no details regarding the 

calculation of the probabilities and expected values. Considering the context of their paper, it seems that they do 

not consider overtaking. This assumption can be valid for stops served by a single line, when severe bunching is 

not likely or when overtaking is prohibited by the operator or not feasible due to road space. It has to be relaxed 

though when bus bunching is such that the presence of more than one bus at the same stop can be an issue, and/or 

when more attractive lines serve the same stop and their services can overlap. Bowman and Turnquist showed 

that their model predicts the actual arrival patterns very well, and that their model can cover both the headway 

ranges normally modelled with a frequency-based approach and those modelled by a scheduled-based one. 

Furthermore, they demonstrated that passengers are more sensitive to schedule reliability than to service 

frequency. A limitation of their model, stressed by the authors themselves, is the use of the continuous logit model. 

GEV models like the logit one are commonly used for discrete choices within the framework of random utility 

maximization. The application of the logit model is constrained by the underpinning hypothesis of the 

independence of errors across alternatives. The validity of this assumption becomes particularly debatable when 

the decision dimension is continuous. The problem has been addressed in the literature concerning the topic of 

the departure-time choice of travellers using private transport. Choices in a continuous setting instead have been 

often described by models based on hazard functions; but such an approach is criticized because it lacks a proper 

behavioural support. Recently Lemp et al. (2010) suggested a continuous cross-nested logit model, which retains 

the behavioural justification of the logit models and allows for correlation across alternatives. 

In summary, most literature related to bus bunching since Newell and Potts (1964) has focused on deriving 

control strategies to minimize the bunching effect. There is a separate set of literature discussing arrival patterns 

and the value of waiting times but, to the best of our knowledge, the results of the latter set of literature have not 

yet been included in bus bunching models. We propose that considering more advanced passenger arrival time 

models seems necessary to build a realistic model of bus bunching, especially in the era of ubiquitous (real-time) 

information. 

 



3. Notation 

The following notation is used throughout the paper. 

 

Table 1 Notation 

𝑖 Stop number. Stop 0 is the bus depot, where no boarding is allowed.  

𝑛 
Bus index or bus run (concisely, “bus”) designated by index 𝑛 (the meaning will be clarified 

by the context) 

𝜏𝑖𝑛
𝑎 , 𝜏𝑖𝑛

𝑑  Arrival, departure time of bus 𝑛 from stop 𝑖. Superscript 𝑑 is omitted when redundant. 

𝑓𝑖𝑛;  𝐹𝑖𝑛 

Perceived probability distribution function of 𝜏𝑖𝑛; perceived cumulative distribution function 

of 𝜏𝑖𝑛. These and all the remaining probabilities mentioned in the paper have to be considered 

as describing the perception of the travellers rather than the actual characteristics of the 

service. 

T𝑖𝑛 
Interval of perceived possible departure times of bus 𝑚 from stop 𝑖, i.e. Τ𝑖𝑛 = {𝜏𝑖𝑛|𝑓𝑖𝑛(𝜏𝑖𝑛) >
0} 

𝐵𝑖  Set of buses serving stop 𝑖 

𝐵𝑖(𝑡) Set of buses available at stop 𝑖 after 𝑡, i.e. 𝐵𝑖(𝑡) = {n ∈ 𝐵𝑖| sup Τ𝑖𝑛 ≥ 𝑡} 

𝐴𝑖𝑛(𝑡) 
Set of buses alternative to the focal bus serving stop 𝑖 after 𝑡, i.e. 𝐴𝑖𝑛(𝑡) = {𝑚 ∈ 𝐵𝑖(𝑡), 𝑚 ≠
𝑛} 

𝐴𝑖𝑛
− (𝑡) 

Set of alternative buses which can depart from stop 𝑖  before  𝑡 , i.e. 𝐴𝑖𝑛
− (𝑡) = {𝑚 ∈

𝐴𝑖𝑛(𝑡)| inf Τ𝑖𝑚 ≤ 𝑡} 

𝒫(𝐴𝑖𝑛
− (𝑡)) 

Power set of 𝐴𝑖𝑛
− (𝑡) , i.e. is set of all subsets of 𝐴𝑖𝑛

− (𝑡) , including the empty set and 

𝐴𝑖𝑛
− (𝑡) itself. 

𝑃𝑖𝑛(𝑡);  𝑃̅𝑖𝑛(𝑡) 
Generic element of 𝒫(𝐴𝑖𝑛

− (𝑡)); set of elements of 𝐴𝑖𝑛(𝑡) not included in 𝑃𝑖𝑛(𝑡), i.e. 𝑃̅𝑖𝑛(𝑡) =
{𝑆 ∈ 𝐴𝑖𝑛(𝑡)|𝑆 ∉ 𝑃𝑖𝑛(𝑡)} 

φ𝑖(𝑡, 𝜏𝑖𝑛 , 𝑆) 
Probability distribution function of the event “bus 𝑛 departs from stop 𝑖 at 𝜏𝑖𝑛 > 𝑡 and before 

any other bus in the set 𝑆”. 

Φ𝑖𝑛(𝑡, 𝑆) Probability that 𝑛 departs from stop 𝑖 after 𝑡 and before any bus in the set 𝑆 

Ξ𝑖(𝑡, 𝑆) Probability that all buses in the set 𝑆 have departed from stop 𝑖 before 𝑡 

π𝑖𝑛(𝑡, τ) 
Probability distribution function of the event “passenger arriving at stop 𝑖 at 𝑡 and boarding 

bus 𝑛 at 𝜏” 

Π𝑖𝑛(𝑡) Probability that a passenger arriving at stop 𝑖 at 𝑡 boards bus 𝑛 

𝐸(𝑤𝑖(𝑡)) Expected waiting time of a passenger arriving at stop 𝑖 at 𝑡 

𝐸(𝑤𝑖𝑛(𝑡)) Expected waiting time for bus 𝑛 of a passenger arriving at stop 𝑖 at 𝑡  

𝑊(𝑡) Anticipated risk-averse waiting time of a passenger arriving at stop 𝑖 at 𝑡 

𝛼, 𝛽 Parameters measuring aversion of passengers to wait 

𝑞𝑖(𝑡) Passenger arrival rate at stop 𝑖 

𝑏𝑖(𝑡), 𝑏 Time-dependent boarding rate at stop 𝑖; time and stop independent boarding rate 

𝜌 Ratio between arrival and boarding rate, referred to later as the saturation rate  

𝑣𝑖𝑛 Travel time of bus 𝑛 from stop 𝑖 to stop 𝑖 + 1 

𝐷𝑖𝑛  Dwell time of bus 𝑛 at stop 𝑖 

𝛿𝑖𝑛 Exogenous delay of bus 𝑛 at stop 𝑖 

4. Reliability-based passenger arrival 

4.1. Assumptions and model limitations 

To explore the impact of non-uniform passenger arrivals on bus bunching, in this section we derive a model of 

passenger arrival at bus stops based on the assumption that travellers aim to reduce their expected waiting time 

considering that they may miss some or all of their intended buses because of service irregularity. Our passenger 



utility function is based on an anticipated risk-averse waiting time. By “anticipated” we mean that passengers 

decide their arrival time based on their perceived probability of bus departure times in a non-perfectly reliable 

system, i.e. in a system in which the actual departure times can differ from the scheduled ones. By “risk-averse” 

we mean that passengers attach a cost to the possibility of missing their last service. Our utility function is based 

on a behavioural model similar to that considered by Bowman and Turnquist, but we extend their approach by 

allowing for the existence of an indefinite number of buses and for the possibility of overtaking among buses. 

Different specifications of the utility functions are discussed below. The model presumes that passengers have a 

priori information on the scheduled departure time of buses and on the accuracy of such information. The first 

hypothesis holds in the case of relatively low-frequency services for which a timetable is published and known by 

the travellers. In the case of services for which schedules are not published, it may still be valid if the day-by-day 

service regularity is high. The accuracy of the information considered in the decision-making process depends 

both on the punctuality of the service and on the passenger’s knowledge of it: passengers who have used a given 

transit system only few times, might not trust the information they have and hence consider a large variability of 

departure times even when the system is in fact very reliable. In the following, by system reliability we mean the 

reliability accounted for in the decision-making process, as a consequence of the perceived information accuracy. 

Both the expected waiting times and the derived utility function are deterministic. However, we consider that 

the perception of the value of each arrival time varies among users. In particular, following Bowman and 

Turnquist, we assume that the passenger arrival distribution can be described by a continuous logit model. Not 

much work has been done concerning passenger arrival patterns after the contribution of Bowman and Turnquist 

(1981). Since our focus here is on the derivation of the utility function, we use the continuous logit model as it has 

been proven in the Bowman and Turnquist paper to be able to describe the actual behaviour of public transport 

users for their scenario assumptions despite its theoretical limitations. In our model, passengers always get to a 

bus stop at their intended arrival time. In reality, this might not happen because passengers cannot always 

anticipate their walking time exactly. This phenomenon exceeds the scope of this study. 

It is assumed that passengers board the bus that departs first after their arrival. Such an assumption is realistic 

if we assume that only one bus line serves the stop or that all bus lines travel the same route downstream from the 

boarding point. In these cases passengers do not face the “common line issue” where the choice set might depend 

on the time spent waiting at the stop already (see Noekel and Weckek (2009) for elaboration of such cases). The 

“board the first departing bus” behaviour is further justified by the empirical findings that passengers put more 

cost on wait time than in-vehicle travel time (e.g. Quarmby, 1967). However, we acknowledge that there are cases 

in which “board the first bus” strategy is not realistic, for instance when crowding on buses affects the 

decision/possibility to board, when passengers might anticipate variations in downstream travel times between 

buses, or when passengers prefer express services. Our model does not cover these cases. Statistical independence 

is assumed for both the departure times of different buses at the same stop and the departure times of the same bus 

at consecutive stops. This assumption is clearly an over-simplified representation of reality as departures of buses 

from the same stop can be correlated. Our assumption does not hold if, for example, particular operational policies 

exist, such as a FIFO rule for buses departing from the stop, or, if the stop layout does not allow more than one 

bus to board passengers at a time. 

We further assume that the passenger arrival distributions at each stop are independent from what happens at 

other stops and therefore in this section the subscript representing the stop is redundant and will be omitted for the 

sake of simplicity. We add the subscript in Section 5 when considering the (obviously correlated) departures of 

the same bus from subsequent stops. This stop-independence assumption in the behavioural model implicitly 

assumes that real time information are not available but that passengers only know the scheduled information (plus 

their perception of the service reliability and the variance in their stop access time) when deciding their stop arrival 

time. 

We hypothesize that a bus leaves a stop as soon as all waiting passengers have boarded, i.e. we do not consider 

any holding policy. This assumption implies that we consider bus stops as on the main road, rather than in a bus 

bay. Meng and Qu (2013) show that bus dwell time at bus bays possesses a high degree of uncertainty caused by 

the fact that buses having to merge onto the main road and that the merging process is dependent on the level of 

traffic on the shoulder lane. In our model, as in most works in literature, the dwell time depends only on the 

boarding process. This is realistic when the boarding time is longer than the alighting time, which can occur 

because (a) either passengers who board are generally less than those who alight, and/or (b) the boarding time per 

passenger is considerably longer than the alighting one, due for instance to the fact that tickets are issued when 

boarding. In addition, no influence between boarding and alighting is considered. This happens when buses are 

not crowded, and/or boarding and alighting take place at different doors. Finally, we note that we also do not 

include capacity effects in this model; thus assume all waiting passengers can board the first departing bus. 



4.2. Perceived probability of boarding a bus 

Clearly if 𝐵(𝑡) = {𝑛} (i.e. if bus 𝑛 is the only departing after time t), the probability that a passenger who 

arrives at the stop at time t boards bus 𝑛 is equal to the probability that 𝑛 departs after 𝑡. Consider now that the 

passenger arrives at 𝑡 but 𝐵(𝑡) = {𝑛, 𝑛 + 1} and inf Τ𝑛+1 ≤ 𝑡. Still the passenger can only board 𝑛 if it departs 

after 𝑡. In this case he will actually board 𝑛 if 𝑛 + 1 has already departed or it has not departed yet and actually 

leaves after 𝑛. In the remaining scenario, in which 𝑛 + 1 has not departed yet but it leaves before 𝑛, the passenger 

boards 𝑛 + 1. In other words, the overall probability of boarding 𝑛 is equal to the sum of the probability of 

boarding it in each of two cases of 𝐴𝑛
−(𝑡) ∈ 𝒫(𝐴𝑛

−(𝑡)) = {∅, {𝑛 + 1}}: 

 

Π𝑛(𝑡) = Pr(𝜏𝑛 > 𝑡 ∩ 𝜏𝑛+1 < 𝑡) + Pr(𝜏𝑛 > 𝑡 ∩ 𝜏𝑛+1 > 𝜏𝑛) (2) 

In the general case in which 𝑐 = |𝒫(𝐴𝑛
−(𝑡))| ≥ 2, i.e. considering the possibility of more than one alternative 

to 𝑛 which can depart before 𝑡, 𝑛 is boarded in all the cases in which some of the alternatives have departed before 

𝑡 and all others depart after 𝑛. The number of the scenarios to consider in the calculation of Π𝑛(𝑡) is equal to the 

number of combinations of buses in 𝐴𝑖𝑛
− (𝑡), i.e.  

 

Π𝑛(𝑡) = ∑ Pr ((𝜏𝑛 > 𝑡)  ∩ (𝜏𝑙 < 𝑡 ∀𝑙 ∈ 𝑃𝑛(𝑡)) ∩ (𝜏𝑚 > 𝜏𝑛 ∀𝑚 ∈ 𝑃̅𝑛(𝑡)))

𝑃𝑛(𝑡)∈𝒫(𝐴𝑛
−(𝑡))

 
(3) 

 

Fig. 1.  Example of bus arrival probability distributions functions at a stop 

 

To illustrate (3), consider the case in Fig. 1, in which lines of different colours represent the perceived 

probability distribution functions of different buses (in the explanation of the example, buses are indicated with 

the initial letter of their colour). Following the definitions in Section 3, 𝐵 =
{𝑃𝑢𝑟𝑝𝑙𝑒, 𝑌𝑒𝑙𝑙𝑜𝑤, 𝑅𝑒𝑑, 𝐺𝑟𝑒𝑒𝑛, 𝐶𝑦𝑎𝑛}, 𝐵(𝑡) = {𝑌, 𝑅, 𝐺, 𝐶}, 𝐴𝑅(𝑡) = {𝑌, 𝐺, 𝐶},  𝐴𝑅

−(𝑡) = {𝑌, 𝐺}, 𝒫(𝐴𝑃
−(𝑡)) =

{∅, {𝑌}, {𝐺}, {𝑌, 𝐺}}. Bus 𝑃 has surely departed at 𝑡, therefore 𝑃 ∉ 𝐴𝑅(𝑡) and it does not influence the probability 

of boarding 𝑛. Note that it does influence such probability if the passenger arrives at 𝑡′. There are four possible 

circumstances (note that |𝒫(𝐴𝑛
−(𝑡))| = 4) under which 𝑅 is boarded by a passenger arriving at 𝑡: 

 No bus has departed before 𝑡, and 𝑅 departs before all alternative buses: 𝑃𝑅(𝑡) = ∅, 𝑃̅𝑅(𝑡) = 𝐴𝑅(𝑡) =
{𝑌, 𝐺, 𝐶} 

 𝑌 has departed before 𝑡, and 𝑅 has not departed yet and departs before 𝐺 and 𝑃: 𝑃𝑅(𝑡) = {𝑌}, 𝑃̅𝑅(𝑡) =
{𝐺, 𝐶} 

 𝐺 has departed before 𝑡, and 𝑅 has not departed yet and departs before 𝑌 and 𝑃: 𝑃𝑅(𝑡) = {𝐺}, 𝑃̅𝑅(𝑡) =
{𝑌, 𝐶} 

 𝐺  and 𝑌  have departed before 𝑡 , and 𝑅  has not departed yet and departs before 𝑃 : 𝑃𝑅(𝑡) =
{𝐺, 𝑌}, 𝑃̅𝑅(𝑡) = {𝐶} 

The four cases are mutually exclusive; therefore, the overall probability of boarding 𝑅 is equal to the sum of 

the probability of each case, as indicated by (3). 

To calculate the probabilities in the summation in (3) we need to derive the probabilities that a bus leaves before 

or after a set of other buses. As to the former, consider a set of buses 𝑆 alternative to 𝑛 and assume without loss of 

generality 𝑆 = {1, … , 𝑘}. In general, the probability that 𝑛 departs after 𝑡 and before any other bus in 𝑆 can be 

calculated from the joint distribution of departure time probability as 

 

 
t 

𝑓𝑖𝑚  

t' 

time 



Φ𝑛(𝑡, 𝑆) = ∫ 𝑓(𝜏𝑛, 𝜏1, … , 𝜏𝑘  )

𝜏𝑛≥𝑡;𝜏𝑗>𝜏𝑛 ,𝑗=1,…,𝑘

𝑑𝜏𝑛𝑑𝜏1 … 𝑑𝜏𝑘  (4) 

Under the assumption that passengers perceive the departure times of different buses as statistically 

independent, (4) becomes1 

Φ𝑛(𝑡, 𝑆) = ∫ 𝑓𝑛(𝜏𝑛) ∙ ∏(1 − 𝐹𝑚(𝜏𝑛))

𝑚∈𝑆

𝑑𝜏𝑛

+∞

𝑡

 (5) 

The integrand function used to calculate Φ𝑛(𝑡, 𝑆) can be interpreted as the pdf of the event “bus 𝑛 departs at 

𝜏𝑛 > 𝑡 and before any other bus in the set 𝑆”, i.e. 

 

φ𝑛(𝑡, 𝜏𝑛 , S) = 𝑓𝑛(𝜏𝑛) ∙ ∏(1 − 𝐹𝑚(𝜏𝑛))

𝑚∈𝑆

 (6) 

Note that, as expected, the probability of bus 𝑛 departing before any other bus in the set 𝑆 decreases when 

𝑡 increases. In fact 

 

Proposition 1: Φ𝑛(𝑡, 𝑆) is a non-increasing function of 𝑡 

 

Proof: φ𝑛(𝑡, 𝜏𝑛 , S) ≥ 0 because it is a product of pdf and CDF. Applying the Leibniz’s rule for integral 

differentiation 

𝑑

𝑑𝜃
∫ 𝑓(𝑥, 𝜃)𝑑𝑥

𝑏(𝜃)

𝑎(𝜃)

= ∫ 𝜕𝜃𝑓(𝑥, 𝜃)𝑑𝑥
𝑏(𝜃)

𝑎(𝜃)

+ 𝑓(𝑏(𝜃), 𝜃)𝑏′(𝜃) − 𝑓(𝑎(𝜃), 𝜃)𝑎′(𝜃) 

it follows  

𝜕Φ𝑛(𝑡, 𝑆)

𝜕𝑡
= ∫ 𝜕𝑡𝑓𝑛(𝜏𝑛) ∙ ∏(1 − 𝐹𝑚(𝜏𝑛))

𝑚∈𝑆

𝑑𝜏𝑛+φ𝑛(t,̅ 𝜏𝑛, S)∙0-φ𝑛(t, 𝜏𝑛 , S)∙1

𝑡̅>𝑡

𝑡

= −φ𝑛(t, 𝜏𝑛 , S) ≤ 0 

which shows that Φ𝑛(𝑡, 𝑆) is a non-increasing function of 𝑡. QED. 

 

In general the probability that all buses in the set 𝑆 have departed earlier than 𝑡 is 

 

Ξ(𝑡, 𝑆) = ∫ 𝑓(𝜏𝑛 , 𝜏1, … , 𝜏𝑘  )

𝜏𝑗<𝑡,𝑗=1,…,𝑘

𝑑𝜏𝑛𝑑𝜏1 … 𝑑𝜏𝑘 (7) 

Under the assumption of independence of the departures 

 

Ξ(𝑡, 𝑆) = ∫ 𝑓(𝜏1, … , 𝜏𝑘 )

𝜏𝑗<𝑡,𝑗=1,…,𝑘

𝑑𝜏1 … 𝑑𝜏𝑘 = ∫ 𝑓(𝜏1 )

𝑡

−∞

… ∫ 𝑓(𝜏𝑘 )

𝑡

−∞

𝑑𝜏𝑘 … 𝑑𝜏1 = ∏ 𝐹𝑚(𝑡)

𝑚∈𝑆

 (8) 

Intuitively such probability has to increase in time and in fact 

 

Proposition 2: Ξ(𝑡, 𝑆) is a non-decreasing function of 𝑡 

 

Proof: The proposition follows immediately by the fact that 𝐹𝑚(𝑡) are non-decreasing functions of 𝑡. 

 

Let E and L denote two disjoint sets of buses not including n. Using (5) and (8) the joint probability that all 

buses in 𝐸 depart before 𝑡, and 𝑛 departs after 𝑡 and before all buses in 𝐿 is 

 

Ξ(𝑡, 𝐸) ∙ Φ𝑛(𝑡, 𝐿) (9) 

Using this result, (3) becomes 

                                                           
1 In the following, we stick to the usual convention of considering an empty summation, i.e. a summation with no addend, equal to 0 and an 

empty product, i.e. a product with no factor, equal to 1. 



 

Π𝑛(𝑡) =  ∑ Ξ(𝑡, 𝑃𝑛(𝑡)) ∙ Φ𝑛(𝑡, 𝑃̅𝑛(𝑡))

𝑃𝑛(𝑡)∈𝒫(𝐴𝑛
−(𝑡))

 
(10) 

The pdf of the event “a passenger arriving at 𝑡 departs at 𝜏 with bus 𝑛” is 

 

π𝑛(𝑡, 𝜏) =  ∑ Ξ(𝑡, 𝑃𝑛(𝑡)) ∙ φ𝑛(𝑡, 𝜏, 𝑃̅𝑛(𝑡))

𝑃𝑛(𝑡)∈𝒫(𝐴𝑛
−(𝑡))

 
(11) 

Proposition 3: The probability of boarding a bus 𝑛 is not influenced by the presence of services which can 

depart only after bus 𝑛 has surely left the stop. 

 

Proof: It is sufficient to prove that π𝑛(𝑡, 𝜏) is not influenced by a bus 𝑚 that surely departs after 𝑛. In fact, 

Π𝑛(𝑡) is the integral of π𝑛(𝑡, 𝜏) over 𝜏.Therefore if π𝑛(𝑡, 𝜏) is not affected by 𝑚, neither is Π𝑛(𝑡). We show now 

that the presence of 𝑚 affects neither Ξ(𝑡, 𝑃𝑛(𝑡)) nor φ𝑛(𝑡, 𝑃̅𝑛(𝑡)).  

 

Case 1: 𝑡 > max 𝑇𝑛. Since 𝑡 > max 𝑇𝑛 ⇔ 𝑓𝑛(𝜏𝑛|𝜏𝑛 ≥ 𝑡) = 0 , it turns out that  

𝜑𝑛(𝑡, S) = ∫ 𝑓𝑛(𝜏𝑛) ∏(1 − 𝐹𝑘(𝜏𝑛))

𝑘∈𝑆

𝑑𝜏𝑛

+∞

𝑡

= ∫ 0 ∙ ∏(1 − 𝐹𝑘(𝜏𝑛))

𝑘∈𝑆

𝑑𝜏𝑛

+∞

𝑡

= 0 

Independent from 𝐹𝑚(𝜏𝑛).  

 

Case 2: 𝑡 ≤ max 𝑇𝑛. The hypothesis that a bus 𝑚 can depart only after bus 𝑛 has surely left the stop implies 

that min 𝑇𝑚 < max 𝑇𝑛. It follows that  𝐹𝑚(𝜏𝑚|𝜏𝑚 ≤ min 𝑇𝑚 < max 𝑇𝑛) = 0 . Therefore 

𝜑𝑛(𝑡, S) = ∫ 𝑓𝑛(𝜏𝑛) ∏(1 − 𝐹𝑚(𝜏𝑛))

𝑘∈𝑆

𝑑𝜏𝑛

+∞

𝑡

= ∫ 𝑓𝑛(𝜏𝑛) ∏(1 − 𝐹𝑘(𝜏𝑛))

𝑘∈𝑆

𝑑𝜏𝑛 = ∫ 𝑓𝑛(𝜏𝑛) ∏ (1 − 𝐹𝑘(𝜏𝑛))

𝑘∈𝑆∖𝑚

𝑑𝜏𝑛

max Τ𝑛

𝑡

max Τ𝑛

𝑡

 

The previous holds for any S so also for any 𝑃̅𝑛(𝑡). Since 𝑚 cannot be part of 𝑃𝑛(𝑡) for any 𝑡 ≤ max 𝑇𝑛, the 

presence of 𝑚 does not affect Ξ(𝑡, 𝑃𝑛(𝑡)). Since 𝑚 does not influence 𝜑𝑛(𝑡, 𝑃̅𝑛(𝑡)) and Ξ(𝑡, 𝑃𝑛(𝑡)), it does not 

influence their product π𝑛(𝑡, 𝜏). QED. 

 

4.3. Expected waiting time 

The waiting time of a passenger arriving at 𝑡 and departing at 𝜏 is 𝑤 = 𝜏 − 𝑡. Since boarding different buses 

are mutually exclusive events, the probability that a passenger arriving at 𝑡 departs at 𝜏 is equal to the sum of the 

probabilities that he departs with any of the available buses. Therefore the expected waiting time for a passenger 

arriving at 𝑡 is  

 

𝐸(𝑤(𝑡)) = ∫ (𝜏 − 𝑡) ∑ π𝑛(𝑡, 𝜏)

n∈𝐵(𝑡)

𝑑𝜏 

+∞

𝑡

 (12) 

and the expected waiting time corresponding to bus 𝑛 

 

𝐸(𝑤𝑛(𝑡)) = ∫ (𝜏 − 𝑡)

+∞

𝑡

π𝑛(𝑡, 𝜏)𝑑𝜏 (13) 

Proposition 4: The overall expected waiting time is equal to the sum of the expected waiting times of all 

available services 

Proof: 

𝐸(𝑤(𝑡)) = ∫ (𝜏 − 𝑡) ∑ π𝑛(𝑡, 𝜏)

n∈𝐵(𝑡)

𝑑𝜏

+∞

𝑡

= ∑ ∫ (𝜏 − 𝑡)

+∞

𝑡

π𝑛(𝑡, 𝜏)

n∈𝐵(𝑡)

𝑑𝜏 = ∑ 𝐸(𝑤𝑛(𝑡))

n∈𝐵(𝑡)

 



QED. 

4.4. Passenger arrival distribution 

The expected waiting time obtained from (12) cannot be used to specify the utility function of passengers 

deciding their arrival time at a stop as we need to consider the possibility of missing all buses after a certain 𝑡̅, i.e. 

if ∃𝑡̅|𝐵(𝑡) = ∅∀𝑡 ≥ 𝑡 or, more commonly, the possibility that the passenger aims to board before a time 𝑡̅ and 

attaches higher disutilities to later departures. To solve this shortcoming we consider 

 

𝑊(𝑡) = 𝐸(𝑤(𝑡)) + (1 − ∑ Π𝑛(𝑡)

𝑛∈𝐵(𝑡)

) c (14) 

where 𝑐  is a constant representing the aversion to the possibility of missing the last attractive boarding 

opportunity. We further assume that the utility function has the form  

 

𝑈(𝑡) = 𝛼(𝑊(𝑡))
𝛽

 (15) 

and that the arrival time choices can be described by the continuous logit model 

 

𝑞(𝑡) = −
𝑒𝑈(𝑡)

∫ 𝑒𝑈(𝑡)𝑑𝑡
𝑡2

𝑡1

 (16) 

Where [𝑡1; 𝑡2] is an interval spanning all the possible departure times of the buses considered by passengers. 

We note that different specifications of the anticipated risk-averse expected value are possible. For instance, an 

optimistic passenger may choose the arrival time with  

 

𝑊𝑜𝑝𝑡(𝑡) = min{𝐸𝑛(𝑤(𝑡))|1 − 𝐹𝑛(𝑡) > 0} (17) 

i.e. considering the bus with the minimum waiting time among the buses that can depart after 𝑡. Instead, the utility 

function of a pessimist could be based on the maximum waiting time among those buses that can be surely boarded, 

i.e. 

 

𝑊𝑝𝑒𝑠(𝑡) = max{𝐸𝑛(𝑤(𝑡))|1 − 𝐹𝑛(𝑡) > 0} (18) 

Our reliability-based passenger arrival model is illustrated in Fig. 2 for the case of three buses with the triangular 

pdf as in (a). We assume that the modal value is the scheduled departure time of each bus (in general, the modal 

value may differ from the scheduled departure time, for instance when passengers think that the buses are 

systematically delayed). Note that perceived departure times earlier than the scheduled ones, although normally 

unlikely, cannot be completely ruled out, for instance because bus drivers may not comply with the schedule, or 

because of discrepancies between the time of the passenger and the time of the bus system.  

 



(a)

 

(b) 

 
(c)

 

(d) 

 
  

Fig. 2.  Illustration of the reliability-based passenger arrival model 

 

In (a) it can be seen that bus 1 is scheduled to depart before bus 2, but it can be overtaken by bus 2. Instead bus 

3 departs surely after buses 1 and 2. Fig. 2(b) shows that, because of the possibility that bus 1 is later than bus 2, 

the perceived probability of boarding bus 1 (and analogously that of bus 2)  is always smaller than 1. The 

probability of boarding 1 and 2 are constant while the pdf of bus 1 is nil, i.e. until the first possible departure of 

bus 1. After that, the chances of missing bus 1 increase, so the probability of boarding it decreases and instead the 

probability of boarding bus 2 increases. Analogously, the perceived probability of boarding bus 3 is nil until the 

moment when the passenger is sure to be able to board at least bus 2, then it starts increasing. Different from buses 

1 and 2, the probability of boarding bus 3 reaches 1, because between times 7 and 8 it has not departed for sure 

and it cannot be surpassed by any other bus. The overall probability of boarding at least one bus is equal 1 until 

the possibility of missing bus 3 arises. Fig. 2(c) shows the expected waiting times of each bus and the 

corresponding overall expected waiting time. After time 7, the probability of catching a bus coincides with the 

probability of boarding bus 3 and therefore the overall waiting time is equal to the expected waiting time of bus 

3. Such expected waiting time decreases when the probability of boarding bus 3 decreases. Hence, without the 

correction suggested in (14), the perceived expected waiting time of a passenger arriving at 𝑡 > 8 would decrease 

with the paradoxical consequence that the probability of arrival would increase when the chances of missing the 

last service increase. In Fig. 2(d) it is evident that the arrivals when service reliability and risk aversion are 

considered are far from being uniform as commonly assumed for bus load models. 

5. Bus propagation model 

In the following, we develop a bus bunching model consistent with the non-uniform arrival process. Consider 

a common scenario of a route served by buses of different lines which serve the same destinations. To avoid the 

issue of having to consider different passenger destinations and hence different attractive sets, we assume that the 

buses might originate from different terminals, then merge in the city centre and all are destined for the same 

terminal. As in Newell and Potts (1964), the undisturbed trajectories of the buses are described by the following 

bus propagation equations 



 

{
𝜏𝑖𝑛

𝑎 = 𝜏𝑖−1𝑛
𝑑 + 𝑣𝑖−1𝑛

𝜏𝑖𝑛
𝑑 = 𝜏𝑖𝑛

𝑎 + 𝐷𝑖𝑛 + 𝛿𝑖𝑛

 (19) 

Assuming that 𝑣𝑖𝑛 and the scheduled departure times of the buses from the first stop (𝜏0𝑛
𝑑  ) are known, (19) can 

be solved recursively if a formulation of 𝐷𝑖𝑛  is available as a function of 𝜏𝑗𝑙
𝑑  and 𝜏𝑘𝑙

𝑎 , with 𝑗 < 𝑖; 𝑘 ≤ 𝑖; 𝑙 ≤ 𝑛. 

Remember that 𝛿𝑖𝑛 is an exogenously determined delay, and so it is considered known in (19). 

5.1. Newell & Potts model 

In their bus propagation model, Newell and Potts assume that passenger arrival and boarding rate are time-

independent, and that the boarding process follows the law 

 

𝐷𝑖𝑛 = 𝜌(𝜏𝑖𝑛
𝑑 − 𝜏𝑖𝑛−1

𝑑 ) (20) 

where 𝜌 is the (time-independent) ratio between the passenger arrival and boarding rates. That is, they consider 

boarding as a stationary unsaturated deterministic queuing process with constant degree of saturation. They also 

assume that the bus departs as soon as the queue of waiting passengers vanishes, independent of any schedule or 

holding policy. 

5.2. Our model 

We retain the hypotheses that boarding can be represented as a stationary unsaturated deterministic queue, and 

that buses depart immediately after boarding all waiting passengers. In line with Section 4 we relax though the 

assumption that the degree of saturation is constant. Eq. (20) can be regarded as a particular case of the general 

relationship (21) regulating an unsaturated deterministic boarding process with time-dependent arrival and 

boarding rates: 

 

∫ [𝑞𝑖(𝑡) − 𝑏(𝑡)]𝑑𝑡 =

𝜏𝑖𝑛
𝑑

𝜏𝑖𝑛−1
𝑑

∫ 𝑞𝑖(𝑡)𝑑𝑡 −

𝜏𝑖𝑛
𝑑

𝜏𝑖𝑛−1
𝑑

∫ 𝑏𝑖(𝑡)𝑑𝑡

𝜏𝑖𝑛
𝑑

𝜏𝑖𝑛
𝑎

= 0 (21) 

Note that evidently 𝑏𝑖(𝑡) = 0 between 𝜏𝑖𝑛−1
𝑑  and 𝜏𝑖𝑛

𝑎 . We consider that passengers do not arrive uniformly but 

they follow the distribution derived from (16). We further assume that the boarding rate is constant which appears 

to be a reasonable assumption since the rate is mainly linked to vehicle characteristics and the ticketing system. 

Under our hypotheses, (21) simplifies to 

 

∫ 𝑞𝑖(𝑡)𝑑𝑡 −

𝜏𝑖𝑛
𝑎 +𝐷𝑖𝑛

𝜏𝑖𝑛−1
𝑑

𝑏𝐷𝑖𝑛 = 0 (22) 

In our formulation, 𝑞𝑖(𝑡) does not depend on the actual bus arrival and departure times but only on passenger 

perception of the pdf of the bus departure times. Therefore it is exogenous to the bus propagation model, i.e. it is 

known in (22). If 𝜏𝑛
𝑎 and 𝜏𝑛−1

𝑑  are known, (22) can be easily solved with the iterative approach described in Table 

2. Note that the algorithm works also if the boarding rate is not constant but it can be known once 𝜏𝑗𝑙
𝑑 and 𝜏𝑘𝑙

𝑎 , with 

𝑗 < 𝑖; 𝑘 ≤ 𝑖; 𝑙 ≤ 𝑛 are known. Since 𝐷𝑖𝑛  in (22) is a function of 𝜏𝑖𝑛−1
𝑑  and 𝜏𝑖𝑛

𝑎 , (19) and (22) can be easily used to 

derive the bus trajectories from 𝜏0𝑛
𝑑 . 

 



Table 2 Algorithm to calculate 𝐷𝑖𝑚 

Initialisation 𝛿𝑡 ← small time step 

𝑚 ← 1 

 

Main 

𝑄 ← ∫ 𝑞𝑖(𝑡)𝑑𝑡

𝜏𝑖𝑛
𝑎 +𝑛 𝛿𝑡

𝜏𝑖𝑛−1
𝑑

 

Obtain number of passengers who arrived 

between 𝜏𝑖𝑛−1
𝑑  and 𝜏𝑖𝑛

𝑎 + 𝑚𝛿𝑡 

 

𝐵 ← ∫ 𝑏𝑖(𝑡)𝑑𝑡

𝜏𝑖𝑛
𝑎 +𝑚 𝛿𝑡

𝜏𝑖𝑛−1
𝑑

= 𝑏𝑚𝛿𝑡 

 

Obtain number of passengers who boarded 

between 𝜏𝑖𝑛−1
𝑑  and 𝜏𝑖𝑛

𝑎 + 𝑚𝛿𝑡 

 If 𝑄 ≤ 𝐵 then 𝐷𝑖𝑛 ← 𝑚𝛿𝑡 otherwise 𝑚 ← 𝑚 +
1 and repeat Main  

 

6. Bus bunching with passenger reliability-based behaviour 

To illustrate the effects of reliability-based passenger arrivals on bunching, we compare the solutions provided 

by our model of bus propagation to those given by the Newell and Potts model in an analogous situation. The 

exemplification is carried out by varying some parameters of the basic scenario described in Table 3. 

 

Table 3 Case study, base parameter settings 

Bus service 

 6 buses, 10 stops (including the depot) 

 Scheduled headway: 𝜏0𝑛+1
𝑑 − 𝜏0𝑛

𝑑 = 10min, 𝑛 = 1, … ,5 

 Travel time: 𝑣𝑖𝑛 = 3min, 𝑖 = 0, … ,8, 𝑛 = 1, … ,6 

 𝛿𝑖𝑛 = 0min, 𝑖 = 0, … ,9, 𝑛 = 1, … ,6 

Reliability-based arrival model 

 Perceived pdf of departure time at all stops: triangular function with min Τ𝑛 = 𝜏𝑛̅ − 1min, max Τ𝑛 =
𝜏𝑛̅ + 2min where 𝜏𝑛̅ is the scheduled departure time. The scheduled departure time coincides with the 

departure time predicted by the Newell and Potts model when no delay occurs. 

 To avoid the influence of boundary conditions and to have periodic demand, the considered six buses 

do not include the first and the last service along the route. The passenger arrival probability function 

in the basic scenario is shown in Fig. 3. 

 𝛼 = −1, 𝛽 = 0.55 as in Bowman and Turnquist (1981) 

 At each stop 

o Passengers start arriving one scheduled headway (i.e. 10min) before the scheduled 

departure of the first bus from the stop (so that there are passengers waiting for the first bus 

at the stop); 

o All passengers have arrived before the schedule departure of the last bus; 

o Therefore passenger arrival simulation time: 𝒯 = number of buses ∗

 scheduled headway = 60min 

 Total demand: 𝑄 = 100pax when not specified differently 

  

Fig. 3.  Arrival patterns under basic demand conditions 



In the following, to allow for easy comparison of our model with Newell and Potts model, in the latter we 

assume that the 𝑄 passengers arrive uniformly during the simulation period 𝒯 and so we set  

𝜌 =
𝑞𝑁𝑃

𝑏
⁄ =

(
𝑄

𝒯⁄ )

𝑏
⁄  

 

In the figures showing bus trajectories, red lines represent the results of the Newell and Potts model (with 

“uniform” arrival of passengers, blue lines the results of our model (the arrival distribution is indicated in the 

legend of each figure). 

6.1. Effect of boarding rate 

In Fig. 4 we present the results provided by the two bunching models with different boarding rate values, 

namely b=11.11 2 and b=2.78 pax/min.  

Since no random delay is considered, the Newell and Potts model predicts no bunching. When a variable 

passenger arrival rate is considered, a regular service is provided for high values of boarding rates (Fig. 4(a)). But 

when the boarding rate is low, the service can be severely disrupted also without exogenous delays (Fig. 4(b)). 

Note that our bus propagation model, as well as the Newell and Potts one, is not adjusted to deal with cases in 

which overtaking occurs. In case of low saturation rates 𝜌 (as mostly expected in reality) this does not lead to large 

errors as the overtaking and overtaken buses will remain bunched, however, for large 𝜌 this might lead to some 

more significant errors in the trajectories of, both, overtaken and overtaking buses. 

To avoid the issue and exclude overtaking, one could introduce a condition where buses do not depart prior to 

the departure of the previous bus in the main loop in Table 2. This adjustment can be easily implemented. To 

explicitly deal with overtaking, further adjustments are needed in (21) and the main loop in Table 2 In the present 

paper, we decided to avoid both adjustments to allow for comparability with the Newell and Potts model and to 

remain the focus of this paper. 

 

(a) 

 

(b) 

 

Fig. 4.  Effect of boarding rate; no exogenous delay 

The trajectories in Fig. 4(b) can be explained by looking at the cumulative passenger arrival and boarding 

functions. Fig. 5 shows cumulative arrivals and boarding for two different values of boarding rates. The two 

scenarios share the same scheduled headway (10 min). Since we assume the schedule equal to that predicted by 

the N&P model with no delay, in Fig. 5(b) the first scheduled arrival occurs at minute 4 and the following ones 

every 10 minutes after; each bus leaves the stop after 6 minutes dwell time (corresponding to ρ=0.6). In (b), with 

ρ=0.15, the first scheduled arrival is at minute 8.5 and the following ones every 10 minutes after; the dwell time 

of each bus is 1.5 minutes.  

Both the Newell and Potts model and our model assume that a bus leaves the stop as soon as all the waiting 

passengers have boarded, i.e. when the cumulative boarding function intersects the cumulative arrival function. 

As illustrated in both Fig. 5(a) and 5(b), in the case of uniform passenger arrival the first departure happens at time 

                                                           
2 We developed our case study by setting the value of ρ, and then deriving the boarding rate corresponding to the assumed total demand. This 

explains the “unusual” value of b. Although it has not been possible to retrieve literature on the boarding rates, 11.11 pax/min seems realistic 
for passengers using travel cards. 



10 and then every 10 minutes (when the red line crosses the blue one. In Fig. 5(a) the cyan and red lines overlap), 

i.e. the service operates according to schedule. Conversely, if passengers arrive considering the schedule as well 

as system unreliability (basic scenario) and the boarding rate is low (Fig. 5(b)), at each instant the cumulative 

number of passenger arrivals is smaller than in the case of uniform arrivals. Therefore, when the first bus arrives 

at time 4, it has to board fewer passengers and it leaves earlier, in the figure at the time in which the cyan line 

crosses the green one. This earlier departure triggers bunching. 

 

(a) 

 

(b) 

 

Fig. 5.  Queue processes under different scenarios 

 

(a) 

 

(b)

 

Fig. 6.  Effect of small positive (a) and negative (b) deviations from 𝑏crit; no exogenous delay 

Note that the case in Fig. 5(b) is a case of serious bunching. In fact, assuming that all waiting passengers board 

the bus arriving at time 14, this bus would leave at 26, i.e. after the third bus is due at the stop. Of course, the 

possibility for passengers to choose between two buses can alter the queuing process shown in Fig. 5(b) but this 

clearly exceeds the scope of the analysis here. Fig. 5(a) shows also that bunching is not triggered by non-uniform 

arrival if 𝑏 is high enough, In other words, there is a critical value 𝑏crit such that non-uniform passenger arrivals 

generate instability for 𝑏 ≤ 𝑏crit whereas they do not compromise stability for 𝑏 > 𝑏crit. Even a small negative 

deviation from 𝑏crit can induce large perturbations: For example in Fig. 6 the difference between 𝑏 in (a) and (b) 

is only 0.05pax/min. The existence of the critical value is clearly linked to the shape of the passenger arrival 

function: suffice it to notice that if the green line was above the blue one in Fig. 5(b), the cyan line would not 

intersect it before time 10 and bunching would not arise. 

 



6.2. Effect of total demand 

In the Newell and Potts model the boarding rate does not appear explicitly but is linked to the arrival rate via 

the degree of saturation 𝜌. It follows that an increase of the total demand 𝑄 results in a lower saturation rate, 

assuming that the boarding rate stays constant. Therefore higher total demand does not lead to bunching in the 

Newell and Potts model unless the saturation rate is assumed to be bus specific. In our model, the boarding and 

arrival rates are represented explicitly and enter the model separately. The consequence is that, as illustrated in 

Fig. 7, bus bunching can arise in case the demand is different from the one planned for by the operator, even if the 

boarding rate remains constant (b=11.11pax/min) and there is no exogenous delays. Note that bunching arises for 

values of total demand both lower (Q=75pax, Fig. 7(a)) and higher (Q=125pax, Fig. 7(b)) than the “design” one 

i.e. that used to derive the scheduled departure times. In the former case, bunching is triggered by an early departure 

of the first bus, in the latter by a delay of the same bus. Again the phenomenon can be explained by considering 

the cumulative arrival and boarding functions. Increasing the total demand while the boarding rate stays constant 

means that, in Fig. 5(a), the cyan line does not change whereas at each instant the green line is below (if the 

demand is smaller) or above (if the demand is greater) that in the figure. Therefore they can intersect before (in 

case of smaller demand) or after (in the opposite case) the first scheduled departure time. 

 

(a)

  

(b)

 

Fig. 7.  Effect of total demand; no exogenous delay 

6.3. Effect of exogenous delay 

In the Newell and Potts formulation, bunching arises only when an exogenous delay occurs at any stop. In the 

following we study what happens when the second bus is delayed at stop 1, with b=11.11pax/min and Q=100pax 

(Fig. 8). Fig. 8(c) to (f) show system performance measures for two values of delay. The bars in Fig. 8(c) and 8(d) 

represent the mean of the absolute deviations of the headways from the scheduled ones calculated over all buses 

at each stop. The bars in Fig. 8(e) and 8(f) instead show the mean of the absolute headway deviations from the 

schedule calculated over all stops for pairs of subsequent buses. Crosses hatch the bars when not all buses (stops) 

are used in the calculations because the models predict overtaking and so the results from the moment of the 

overtaking on are not fully comparable. For the sake of comparison, the same subsets of buses (stops) are used to 

calculate the means for both passenger arrival processes. It is evident that larger initial delays give rise to larger 

deviations, and that bunching becomes a more significant problem at stops further from the depot. The 

performance of the system is more or less similar under the two arrival processes at the initial stops. In fact, the 

schedule deviations are slightly lower if passengers consider service reliability. However, the headway deviations 

in case of reliability-based passenger arrivals are greater than those occurring in case of uniform arrival for stops 

further downstream. The differences between the two processes diminish for larger initial delay. In Fig. 8(e) and 

8(f) it can be observed that irregularities at the beginning increase but then tend to reduce. In both cases, the system 

performs better under reliability-based passenger arrivals for the first runs. The better performance of non-uniform 

passenger arrivals in the case of the first delayed bus can be easily explained by considering the cumulative number 

of passengers arriving at bus stops shown in Fig. 5. At each instant the cumulative passenger number in the basic 

scenario is smaller than that under the uniform arrival assumption, except at time 0 and time 100. Therefore, when 

bus 2 experiences a delay at stop 1, the additional passengers waiting to board at stop 2 will be fewer in the case 

of reliability-based arrivals than in the case of uniform arrivals, and so bus 2 is less delayed along its route. The 



difference of performance for later runs between the two arrival processes is attenuated for the larger delay in this 

case as well. For later runs, the headways tend to be less different from the scheduled ones if passengers arrive 

uniformly. Note that deviation peaks for intermediate runs, in particular, in the case of 𝛿12 = 1.5, the maximum 

headway deviation is between the second and the third bus, when the performance with non-uniform arrivals is 

still better than with uniform ones. In the latter scenario, the deviation between bus 2 and 3 is so large that 

overtaking occurs, i.e. the system experiences a very serious distortion at stop 8. In contrast, there is no overtaking 

if the arrivals are non-uniform. This shows that despite the system underperforming on average with non-uniform 

arrivals, consideration of system reliability in passenger arrival times avoids the occurrence of extreme bunching 

conditions in the presence of large delays. 

 

(a)

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 

Fig. 8.  Effect of exogenous delay 



6.4. Effect of passenger perceptions and preferences 

The passenger arrival distribution depends on the perceived pdf of the bus departure times, linked to the system 

reliability, and to the passenger risk-aversion, measured by parameters 𝛼 and 𝛽. 

 

 

Fig. 9.  Arrival processes for different values of system reliability and risk-aversion 

In the following we analyse the effects of three different arrival profiles (the cumulative arrival distributions 

under the different scenarios are represented in Fig. 9 for one scheduled headway), namely 

 Unreliable system: The perceived unreliability is higher than in the basic scenario, i.e. 

triangular pdf functions are considered by the passengers with min Τ𝑛 = 𝜏̅𝑛 − 2, max Τ𝑛 =

𝜏̅𝑛 + 4. Therefore passengers anticipate that bus arrivals can occur along a wider interval, 

therefore their arrivals tend to be more spread as well and the distribution is more similar to 

that predicted under the uniform arrival assumption. 

 Wait averse: The aversion to wait (𝛼 = 1.55) is higher than in the basic scenario. High 

expected wait times have higher disutilities under this scenario than under the basic one. The 

opposite holds for low expected wait times. Therefore passengers tend to avoid both very 

early arrivals – because they might give rise to long waits for the intended buses – and very 

late arrivals – because the might wait long for the next bus, in case the intended one is missed. 

The consequence is that passenger arrivals tend to be concentrated around a specific time. 

 Early departures: In this scenario we consider passengers who fear the possibility of very early 

departures but not of late departures, so that we set min Τ𝑛 = 𝜏̅𝑛 − 8, max Τ𝑛 = 𝜏̅𝑛. Because 

of high aversion to long wait, arrivals tend to be concentrated as in “wait averse”. Given the 

pdf of the bus departure times, the arrival time is earlier than in “wait averse”. As a result, 

there are times in which the cumulative arrivals are higher than under uniform arrivals. This 

scenario is unlikely in reality, where normally buses cannot leave long before the scheduled 

departure time. We add this scenario mainly in order to illustrate the effect of a partly concave 

cumulative arrival function. 

Fig. 10 shows the bus trajectories arising from the three profiles assuming the same exogenous delays of bus 2 

at stop 1 (and same b and Q) considered in Fig. 8. Since the Newell and Potts results depend only on the value of 

the exogenous delay, the red trajectories are the same in (a), (c), (e) and in (b), (d), (f), and they coincide with 

those in Fig. 8(a) and (b) respectively. Under the “unreliable system” scenario the behaviour of the system ((a) 

and (b)) is more similar to that with uniform arrivals than that illustrated in Fig. 8, as it can be anticipated by the 

fact the arrival distributions tend to be more uniform. 

 



(a) 

 

(b) 

 
(c) 

 

(d)

 
(e) 

 

(f) 

 

Fig. 10.  Effect of passenger perceptions and preferences 

The worst performance of the system occurs under “wait averse” arrival patterns, i.e. when passenger arrivals 

are concentrated near the scheduled departure time. In this case, even a small delay gives rise to large headway 

deviation (Fig. 11(a)). 

 



(a)

 

(b) 

 

Fig. 11.  System performance under different values of system reliability and risk-aversion 

When real time information on bus arrival/departure is available, one can expect that most passengers using the 

information arrive at stops very close to the advised time. Given the result obtained for “wait averse”, the impact 

of this behaviour in the presence of unpredicted bus delays should be carefully examined. Under “early departure” 

the system is only little disturbed, because in the first instants of the scheduled headway there is almost no 

passenger arrival and therefore a delayed bus faces a boarding situation very similar to the case with no delay. In 

this case, the system performs even better than with uniform passenger arrivals (Fig. 11 (b)). 

7. Conclusions 

In this paper we discussed the relationship between passenger bus stop arrival patterns and dwell times of buses 

that might lead to bunching effects. We advanced the Bowman and Turnquist (1981) arrival model by developing 

a “reliability-based arrival pattern model” in which possibly overlapping perceived departure time probability 

density functions for several buses are considered. Passengers hence consider the schedule as well as possible 

early or late departures in order to minimize their expected waiting time. We then implemented these behavioural 

assumptions into a bus propagation model similar to that of Newell and Potts (1964) but in which passenger arrival 

and boarding rates enter the model separately. In our case study we compared our model to the assumption of 

uniform arrival as commonly done in the literature on bus bunching. 

Throughout the paper we assume that after the release of the buses from the depot the buses are uncontrolled. 

That is, buses leave stops whenever there are no more waiting passengers. Holding points or headway equalizing 

strategies are not considered. This allows us to illustrate how a mismatch between the operators’ perception of 

service demand and actual demand can lead to bunching effects even without exogenous delays. Remarkably 

bunching occurs also for values of demand lower than the planned one. Bunching generated by unexpected demand 

cannot be derived with previous models, which assumed uniform demand. As all holding related control measures 

introduce inefficiency for the operator into the service we therefore suggest that our model shows the importance 

for operators to correctly assess the demand and resulting dwell time at stops. 

Another main finding is that non-uniform arrival patterns can lead to more severe bunching effects over time. 

This highlights the need for control measures. We believe therefore that the model developed here could be used 

to test the effectiveness of various control strategies, i.e. that it is worth revisiting literature discussed in our review 

section with consideration of the behavioural issues discussed in this paper. An alternative helpful implication 

from this research for operators might be to aim to smoothen the arrival pattern of passengers if on-time arrivals 

cannot be guaranteed. That is, if exogenous delays are feared and boarding rates are substantial it might be worth 

for operators to consider making notes to schedules that slightly early or late departures are possible in order to 

encourage a more spread arrival pattern of passengers. 

Our approach is based on the assumption that passengers are aware of a “static” service schedule information. 

In the introduction we already mentioned the importance of real time information (RTI) to our topic as it will 

encourage even more peaked arrival time patterns also for services with short headways. Modelling the effect of 

upstream delays on downstream arrival patterns we leave though as further work. Not only due to the modeling 

challenges (consideration of RTI requires a dynamic modelling framework) but also since it is not clear in how 

far RTI is (and should be) trusted by passengers from available literature. Possibly, a simple Bayesian approach 

could be investigated to model behaviour once passengers obtain information on the next departure(s). 



In this paper, we have considered an unsaturated boarding process, assuming that buses can always 

accommodate all passengers waiting to board. This might not be true in very busy bus systems where capacity 

constraints affect system operations. On the supply side, consideration of bus capacity is equivalent to constrain 

the dwell time. In addition, the interaction between boarding and on-board passengers may reduce the boarding 

speed at high levels of bus occupancy. Therefore, system performance forecast requires knowledge about origin-

destination matrices, so that the number of on-board passengers can be derived in each bus trip leg. On the demand 

side, one can expect that at least some categories of passengers will try to avoid demand peaks; hence, risk aversion 

may change in time in the presence of time-dependent demand. Finally, the utility of a given arrival time should 

include the level of comfort, which may vary considerably as a function of crowdedness. 

We note further the effect of electronic ticketing. Through smart card technologies, boarding has become faster 

which possibly reduces the bunching effect (see a review in Pelletier et al., 2011). At the same time though more 

efforts are made by bus operators to cater also for the needs of population groups with special needs such as 

wheelchair users. These require additional boarding times, leading to more variability in the boarding rates. 

Therefore, one possible further work direction is to consider non-constant boarding rates b where boarding per 

passenger in off-peak times might take longer when less passengers with travel cards and proportionally more 

passengers with special needs travel (Khoo, 2013). More generally, one might consider different passenger classes 

with different boarding rates as also considered in Bowman and Turnquist (1981) who distinguish a group of 

randomly arriving passenger and a group of optimizing passengers. 

There are various other directions in which this work could be extended, partially already mentioned within 

previous sections but we believe worth summarising here. Firstly, developing a bus propagation model that, 

different from Newell and Potts (1964), gives a realistic representation of the system operations after once 

overtaking between buses has taken place. Secondly, more complex network structures with common lines should 

be considered. In combination with the work presented here, this could lead to conclusions in how far network 

structure and information to passengers could avoid the need for or change the characteristics of holding strategies. 

Thirdly, better understanding of passenger behaviour is needed. We take the parameters 𝛼 and 𝛽 in our model 

from Bowman and Turnquist (1981) and showed that these values affect the service quality which might justify 

further calibration efforts. Furthermore, currently we assume that passengers consider all the possible departures 

from the stop, but some passenger groups might be interested only in a subset of the services as indicated in 

Schmöcker et al. (2013). Related to this, the value of the cost of missing the last desired service has been simply 

set to a large value in our model. Furthermore, also the shape of the perceived departure probabilities needs 

calibration. Finally, obviously the bus choice model could be made more complex by considering crowdedness on 

buses and expectations on residual travel times for different lines (similar to Gentile et al., 2005). 
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