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Abstract This paper analyses the interaction between fares and public transport 

service quality. The rationale is that with higher fares the operator has more resources 

to provide a better service. Demand in turn will depend on both service quality and 

fare leading therefore to the question as to whether there is an optimal fare for 

different general types of cities. The model developed in this paper builds on the work 

of Daganzo (2010). Daganzo determines optimal network headway, stop spacing as 

well as the ratio of a central dense PT service area compared to the whole city size. 

The model input is kept at its minimum considering city size, average speed of 

services, population, the quality of an alternative service as well as fare sensitivity. In 

contrast to Daganzo we include fare and demand elasticity. With this it is possible to 

find some general insights for a range of scenarios what type of fare levels are 

favorable. We focus on a flat fare structure. It is found that in such a fare structure, 

from the viewpoint of maximizing social welfare, a minimum, low fare would be the 

best. However, if the operator cost coverage ratio is considered as objective function 

then there exists an optimal fare above the minimum fare. We discuss further for what 

type of cities acceptable cost coverage ratios are considered as well as illustrate a 

fairly complex interaction between the decision variables.  

Keywords: Public transport, Fare level, City characteristics, Network optimization, 

Continuous Approximation 

 



 
 

 

1 Introduction 
There appears to be little agreement as to what fares are appropriate, fair and/or 

optimal. In a recent report Schmöcker et al. (2017) also describe that the definition of 

“fair fares” varies across cities and transport authorities.  

The objective of this paper is to contribute to this discussion by showing how fares, 

at least under a number of simplifying assumptions, would lead to different service 

quality levels and with it different demand levels. We consider that the answer to this 

will to a large part depend on the city parameters. We aim to provide some guidance 

as to what fares, PT service quality and demand levels can be derived in a range of 

cities. More specifically as input and city parameters we vary size, population density 

and the demand level. Building on the work of Daganzo (2010), where the variables 

that we vary are optimal network headway, stop spacing as well as the ratio of a 

central dense PT service area compared to the whole city size. These variables 

together with the fare level and the demand, which we presume to be elastic, interact 

and provide us with indices of social welfare and subsidy needed for the operator. 

 

 

2 Problem Description and Model Formulation 
 

2.1 Problem description 

 

Daganzo’s model is considering fixed demand as his main interest was the 

understanding of what type of service should be operated under such conditions. Thus 

his model did neither include fare as it can be dropped in a model aiming to maximise 

unweighted user and operator utility. In contrast we consider the summation of the 

disutility of a fixed population, including those who might not be using public 

transport if it becomes too unattractive or expensive. We focus on one PT mode, bus, 

as it is the most prevailing one, and consider an additional alternative mode which 

passengers would choose instead of PT in case it is more attractive. As a potential 

proxy and limiting case for “rejected journeys” we consider taxi, though depending 

on car ownership, distance and other factors obviously private vehicles or active 

transport, such as walking or cycling, would be chosen by many travelers. Our choice 

of taxi might be seen as conservative estimate and a lower limit for demand elasticity. 

That is, if taxi is more attractive than the public transport service provided, then 

clearly the public transport option is unattractive. 

 

2.2 Model formulation 

 

We aim to find the flat fare that minimizes the total social disutility of a PT operator 

and the total travelling population. This is expressed as 

z = 𝜆𝑃𝑇(�̃�𝑜 + �̃�𝑝)  + (𝜆
𝑡𝑜𝑡𝑎𝑙 − 𝜆𝑃𝑇)(�̃�𝑥 +

𝑓𝑥
𝜇
)  

(1) 

In the above equation z denotes the total social disutility for the whole population 

𝜆𝑡𝑜𝑡𝑎𝑙  of concern. �̃�𝑜  stands for the disutility of the public transport operator per 



 
 

 

passenger obtained from Daganzo’s model, while �̃�𝑝stands for the disutility of a 

public transport user also obtained from Daganzo’s model. �̃�𝑥 is the disutility of those 

who chose to use our alternative mode taxi. We separate in the above formulation the 

public transport fare term from the total operator and passenger disutility as this is our 

main variable of concern. 𝜆𝑃𝑇  denotes the actual demand for public transportation, 

and 𝑓𝑥, the fare for the proxy mode. μ is the time value, to convert all disutilities, 

including operator costs, into a single time equivalent unit.  

The disutilities are obtained by following equations for public transportation 

operators and users respectively: 

 

�̃�𝑜 = 𝜋𝑉𝑉 + 𝜋𝑀𝑀 + 𝜋𝐿𝐿 (2) 

�̃�𝑝 =  𝐴 +𝑊 + 𝑇 + 𝛿/𝑣𝑤𝑒𝑇 (3) 

 

Both Equations (2) and (3) are based on Daganzo’s model. Equation (2) stands for the 

disutility of operators per PT passenger, derived by the sum of fixed cost and 

operational cost. L is the summation of the infrastructure length in the periphery and 

in the center, to approximate fixed capital costs; and parameters the total vehicular 

distance traveled (V) and vehicular hours traveled in rush hour (M) reflect the 

operational cost. Equation (3) similarly adds up the walking access time (A), waiting 

time (W), travelling time (T) and penalty from transfer (𝛿/𝑣𝑤𝑒𝑇), as the disutility of 

each PT passengers. δ stands for the weight of transfer time, while 𝑣𝑤  indicates 

walking speed and 𝑒𝑇 the expected number of transfers. 

 

�̃�𝑥 =
𝐸𝑥
𝑣𝑥

 
(4) 

 

Equation (4) on the other hand obtains the disutility of our newly introduced taxi 

mode as distance traveled divided by velocity. It is assumed that the proxy disutility 

does not include walking access/egress time, transfer penalties nor waiting time. 

Ignoring the former two seems realistic for a taxi type service. Average waiting time 

until a taxi arrives could be added as fixed term in the utility function though for 

simplicity we omit it. Furthermore, since all costs are included in a single disutility 

function average waiting would not be distinguishable from a fixed fare that is part of 

𝑓𝑥as we discuss later. To reflect that the attractiveness (and availability) of taxi will 

reduce with more demand we consider its speed 𝑣𝑥 to be a function of demand.  

 

We assume a uniform demand distribution where all OD pairs are equally likely 

which is clearly not realistic but instead can be considered the worst case for public 

transport as Daganzo also notes. Any more concentrated demand will make the case 

easier for public transport. Therefore our model can be considered as a “lower limiting 

case”. Given these assumptions, optimization is done with respect to four decision 

variables: α denoting the proportion of the square city center with a grid PT network 

as in Fig,s 1 and 2, s determining the grid size and with it the distance between stops, 



 
 

 

H for headway as well as fare f. The input parameters that are utilized in above 

equations are D denoting the length of the square city, 𝑣c denoting commercial speed 

of vehicles, τ, the time lost per stop due to the required door operation, deceleration 

and acceleration; and the time added per boarding passenger, τ' (hr/p). (If the effect 

of alighting is significant, it can be usually subsumed into τ'.) In users’ disutility 

calculation, 𝑣w represents the walking access speed. 

 

All of the remaining model parameters except for demand 𝜆𝑃𝑇  are determined as 

below following Daganzo. Eq. 5 estimates the total distance operated as a function of 

city size as well as decision values 𝛼 and s. For the determination of vehicles operated 

as in (6) further the third decision variable headway is used. Eq. 7 provides how the 

peak hour velocity is obtained while in Eq. 8 peak hour traveled time is formulated. 

Eq. 9 to 12 formulation are from Daganzo’s paper for passengers’ disutility. 

For the model we further need to obtain the proportion of passengers that travel within 

the city center, within the periphery and those travelling within both parts of the city 

in order to obtain the expected distance travelled in the network. Since Daganzo’s 

split of the travelling groups does not appear fitting to us for some fare scenarios that 

we would like to extend further, we derive all of the expected values for vehicular 

travelling distance (E) in the appendix provided in the full paper. 

 

𝐿 =
𝐷2(1 + 𝛼2)

𝑠
  

(5) 

 𝑉 =
2𝐷2(3𝛼 − 𝛼2)

𝑠𝐻
 

(6) 

1

𝑣𝑐
=
1

𝑣
+
𝜏

𝑠
+
2.5(1 + 𝑒𝑇)𝜏

′𝜆𝑃𝑇𝑠𝐻

(3𝛼 − 𝛼2)𝐷2
 

(7) 

𝑀 =
𝑉

𝑣𝑐
 

(8) 

𝑒𝑇 = 1 +
1

2
(1 − 𝛼2)2 

(9) 

𝐴 =
𝑠

𝑣𝑤
 (10) 

𝑊 = [
2 + 𝛼3

3𝛼
+
(1 − 𝛼2)2

4
]H 

(11) 

𝑇 =
𝐸

𝑣𝑐
 

(12) 

𝐸𝑃𝑇 =
D(12 − 9α − 9α2 + 23α3 − 5α4 − 5α5 + 2α6 + α7)

12
 

(13) 

 

The public transport demand λ is obtained depending on the relative disutility of 

public transport and taxi considering a base demand for public transport referred to 

as 𝜆𝑃𝑇0 We test both linear as well as logit formulations for demand.  

 

For the linear model, Figure 1 illustrates the demand development depending on the 

disutility and fare for taxi. Given the original fare and disutility, we assume that all 



 
 

 

demand is utilizing the PT. We set this demand as upper limit, so that we also refer to 

it as “potential public transport users”. 

As there are people who would not take PT anyway, regardless of fare, we set an 

upper bound for PT demand as flat part of the curve marked with the upper marked 

point reflects, which is the sum of all PT and Taxi users. When the sum of network 

average fare and travel disutility equals to that of PT, half of the passengers would 

turn to taxi, as the green line marks. 

 

 
 

Figure 1. Illustration of PT demand elasticity with the linear model 

 

Assuming these two reference points, i.e. PT demand 𝜆𝑃𝑇0 at current situation and PT 

demand being halved in case of PT disutility equals taxi disutility in the linear model 

can be derived: 

 

λPT

=

{
 
 
 

 
 
 
𝜆𝑃𝑇0(1 −

�̃�𝑝 +
𝑓
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇

2 (�̃�𝑥 +
𝑓𝑥
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇
)
) if 2 −

2λtotal

𝜆𝑃𝑇0
≥
�̃�𝑝 +

𝑓
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇

�̃�𝑥 +
𝑓𝑥
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇

 

𝜆𝑡𝑜𝑡𝑎𝑙 if 2 −
2λtotal

𝜆𝑃𝑇0
≥
�̃�𝑝 +

𝑓
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇

�̃�𝑥 +
𝑓𝑥
𝜇
− �̃�𝑝

0 −
𝑓0

𝜇

 

 

 

(14) 

In addition to service quality and travel disutility as another indicator to evaluate 

specific fare scenarios we consider the percentage of operational costs (including 

fixed infrastructure costs) covered by the fare revenue as in (18). Most operators face 

such constraints in order to be able to on the one hand provide good public transport 



 
 

 

services but on the other hand not overextend their service if the service is too low. 

In the scenarios described in the full paper 𝜙 will help us to generally show for which 

type of cities larger subsidy requirements can be expected.  

 

𝜙 =
𝑓𝑃𝑇
�̃�𝑜

 
(15) 

 

 

3 Experiments and results 
First of all, to understand the overall tendency of current situation, as well as to see 

how it would be better according to this model, we compare the values of input 

variables as well as each parameters we assumed. The result is shown as follows. 

Parameters in the initial scenarios are in line with Daganzo’s Barcelona related 

example. 

 

Table 1. Absolute value comparison for current situation and the realistic optimum 

situation at base scenario 

 

 Daganzo (2010),  

with fares t 
Optimum 

α 0.65 0.65 

s [km] 0.45 0.44 

H [min] 4.17 3.90 

z̃𝑜 [min] 6.95 6.63 

z̃𝑝 [min] 42.54 42.14 

z̃𝑥 [min] 16.00 10.66 

z [min] 62468 18577 

fare[$] 2.29 1.47 

PT demand [pax/min] 333.33 380.95 

Φ 0.99 0.67 

 

As in the table, the fare at the optimum would be lower than the current situation, 

while the headway is even lower as well. This increases the number of passengers, in 

fact all prospective passengers, to PT with lower passengers’ disutility. This is also 

the reason why the disutility for operators per passengers could remain slightly lower 

than current despite the drop in headway.  

Obviously if the coverage from revenue, ϕ is considered as a rather important aspect, 

the optimum situation is not as favorable as the current ones for the operators. Yet 

from a social welfare perspective, the optimum situation provides the lowest total 

disutility. In the full paper we will discuss further scenarios showing and explaining 

the complex triangular interaction between fare, service level and PT demand by 

varying the minimum fare that can be charged as well as other input parameters such 

as total demand, city size and taxi fare. 



 
 

 

 

 

 

Key References 

 
Daganzo, C.F. (2010). Structure of Competitive Transit Networks. Transportation 

Research Part B, 44(4),, pp. 434–446, 2010. 

 

Schmöcker, J.-D, Fonzone, A., Maadi, S. and Van der Ploog, R. (2017). Determining 

Fare Structures: Evidence and Recommendations from a Qualitative Survey. EMTA 

Brief. Available from < http://www.emta.com/spip.php?article693>. 


