Advanced discrete choice models with applications to transport demand

Stephane Hess
Imperial College London

The Expanding Sphere of Travel Behaviour Research
11th International Conference on Travel Behaviour Research
Kyoto, August 16th - 20th 2006
Topics

- Model specification
- Model estimation
- Interpretation of results
- Use of advanced models in practice
Topics

- Model specification
- Model estimation ⇒ strongly related
- Interpretation of results
- Use of advanced models in practice
Model specification I: correlation structure

- Standard models assume covariance homogeneity

- Mixed covariance structures

\[P_n(i) = \int_{\lambda} P_n(i | \lambda) f(\lambda | \Omega) d\lambda \]

- Allowing for covariance heterogeneity
 - Improvements in model fit
 - Differences in forecasts
 - Differences in trade-offs
Mixed Covariance example

<table>
<thead>
<tr>
<th></th>
<th>MNL</th>
<th>NL</th>
<th>MCOV(_U)</th>
<th>MCOV(_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null LL</td>
<td>-3517.56</td>
<td>-3517.56</td>
<td>-3517.56</td>
<td>-3517.56</td>
</tr>
<tr>
<td>Final LL</td>
<td>-2329.07</td>
<td>-2320.23</td>
<td>-2191.42</td>
<td>-2189.8</td>
</tr>
<tr>
<td>Par</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Adj.(\rho^2)</td>
<td>0.3339</td>
<td>0.3361</td>
<td>0.3725</td>
<td>0.3729</td>
</tr>
<tr>
<td>VTTS(_{car})</td>
<td>54.64</td>
<td>46.03</td>
<td>42.43</td>
<td>41.96</td>
</tr>
<tr>
<td>VTTS(_{PT})</td>
<td>23.64</td>
<td>27.25</td>
<td>30.13</td>
<td>30.94</td>
</tr>
</tbody>
</table>

Changes in market shares after 20% inc. in base TT

<table>
<thead>
<tr>
<th></th>
<th>MNL</th>
<th>NL</th>
<th>MCOV(_U)</th>
<th>MCOV(_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>base alt.</td>
<td>-13.33%</td>
<td>-18.54%</td>
<td>-17.96%</td>
<td>-18.51%</td>
</tr>
<tr>
<td>early dep.</td>
<td>30.72%</td>
<td>46.17%</td>
<td>51.01%</td>
<td>53.36%</td>
</tr>
<tr>
<td>late dep.</td>
<td>31.27%</td>
<td>47.51%</td>
<td>39.22%</td>
<td>40.39%</td>
</tr>
<tr>
<td>PT</td>
<td>26.27%</td>
<td>17.81%</td>
<td>15.62%</td>
<td>14.93%</td>
</tr>
</tbody>
</table>
Model specification II: taste heterogeneity

- Continuous vs discrete mixtures

\[P(i) = \int_{\beta} [P(i | \beta) f(\beta, \Omega)] \, d\beta \]

- Specification issue: choice of distributions

\[P(i) = \sum_{j_1=1}^{m_1} \cdots \sum_{j_K=1}^{m_K} P\left(i \mid \beta = \langle \hat{\beta}^1_{j_1}, \ldots, \hat{\beta}^K_{j_K} \rangle \right) \pi^1_{j_1} \cdots \pi^K_{j_K} \]

- Specification issue: selection of number of support points
Taste heterogeneity example I

<table>
<thead>
<tr>
<th>Model</th>
<th>MNL</th>
<th>MMNL(N)</th>
<th>DM(2)</th>
<th>DM(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respondents:</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>185</td>
</tr>
<tr>
<td>Observations:</td>
<td>1,421</td>
<td>1,421</td>
<td>1,421</td>
<td>1,421</td>
</tr>
<tr>
<td>Final LL:</td>
<td>-880.96</td>
<td>-849.65</td>
<td>-845.40</td>
<td>-844.60</td>
</tr>
<tr>
<td>adj. ρ^2:</td>
<td>0.1036</td>
<td>0.1343</td>
<td>0.1366</td>
<td>0.1354</td>
</tr>
<tr>
<td>Estimation time (s):</td>
<td>1</td>
<td>75</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mean VTTS (DKK/hour):</td>
<td>19.77</td>
<td>30.41</td>
<td>32.81</td>
<td>34.29</td>
</tr>
<tr>
<td>VTTS standard deviation</td>
<td>-</td>
<td>33.70</td>
<td>36.55</td>
<td>41.86</td>
</tr>
</tbody>
</table>
Taste heterogeneity example II

CDF for β_T

- True distribution
- MMNL
- DM(6)
Model specification III: joint structures

- Correlation & random taste heterogeneity
 - phenomena taking place in unobserved part of utility

- Both processes can act at the same time
 - Solution:
 - use GEV mixture models, or joint RCL-ECL formulation

- Majority of applications account only for one of two phenomena
 - Big risk of confounding
 * wrongly retrieved taste heterogeneity: issues in CBA, etc
 * wrongly retrieved correlation: issues in forecasting
<table>
<thead>
<tr>
<th>True model</th>
<th>MNL</th>
<th>NL (rail-SM)</th>
<th>NL (rail-car)</th>
<th>RCL</th>
<th>NL mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final LL</td>
<td>-1562.29</td>
<td>-1560.55</td>
<td>-1525.55</td>
<td>-1163.73</td>
<td>-1147.78</td>
</tr>
<tr>
<td>adj. $\rho^2(0)$</td>
<td>0.5239</td>
<td>0.5241</td>
<td>0.5347</td>
<td>0.6433</td>
<td>0.6478</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>est. t-stat.</th>
<th>est. t-stat.</th>
<th>est. t-stat.</th>
<th>est. t-stat.</th>
<th>est. t-stat.</th>
<th>est. t-stat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_{TC} (\mu)$</td>
<td>-0.100</td>
<td>-0.035</td>
<td>-0.035</td>
<td>-0.028</td>
<td>-0.152</td>
<td>-0.093</td>
</tr>
<tr>
<td>$\beta_{TC} (\sigma)$</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.061</td>
</tr>
<tr>
<td>$\beta_{HW} (\mu)$</td>
<td>-0.020</td>
<td>-0.023</td>
<td>-0.022</td>
<td>-0.014</td>
<td>-0.034</td>
<td>-0.018</td>
</tr>
<tr>
<td>$\beta_{HW} (\sigma)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.009</td>
</tr>
<tr>
<td>$\beta_{TT,car} (\mu)$</td>
<td>-0.030</td>
<td>-0.021</td>
<td>-0.020</td>
<td>-0.015</td>
<td>-0.054</td>
<td>-0.028</td>
</tr>
<tr>
<td>$\beta_{TT,car} (\sigma)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.016</td>
</tr>
<tr>
<td>$\beta_{TT,rail} (\mu)$</td>
<td>-0.040</td>
<td>-0.032</td>
<td>-0.032</td>
<td>-0.022</td>
<td>-0.065</td>
<td>-0.037</td>
</tr>
<tr>
<td>$\beta_{TT,rail} (\sigma)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
</tr>
<tr>
<td>$\beta_{TT,SM} (\mu)$</td>
<td>-0.035</td>
<td>-0.022</td>
<td>-0.022</td>
<td>-0.013</td>
<td>-0.059</td>
<td>-0.034</td>
</tr>
<tr>
<td>$\beta_{TT,SM} (\sigma)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.003</td>
</tr>
<tr>
<td>$\lambda_{rail,SM}$</td>
<td>0.50</td>
<td>1.00</td>
<td>0.89</td>
<td>1.00</td>
<td>1.00</td>
<td>0.48</td>
</tr>
<tr>
<td>$\lambda_{rail,car}$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.49</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Model estimation I: type of draws

- Simulation-based estimation of continuous mixture models
- Various alternatives to standard PMC draws
- Halton draws:
 - Problems even with only 4 – 5 dimensions
 - Also problems with various adapted versions
- MLHS
 - outperforms Halton sequences, but high variance
- Advanced approaches
 - difficult to implement, lack of available code
 - sometimes no guarantee of better performance
Model estimation II: number of draws

- Number of draws has very significant impacts on results

- Guidelines in literature
 - Worrying number of applications using 125 Halton draws, in up to 8 dimensions!

- Other approaches for reducing estimation cost
 - MNL starting values
 - Pre-estimation with lower number of draws

- Advisable to use multiple runs with different draws and starting values
Model interpretation

- Model specification has effects on model results
 - important to recognise in model interpretation

- Example: choice of distributions in MMNL
 - shape assumptions impact model results

- Application: Danish VOT data
 - compare models with different distributional assumptions
Model interpretation example

$\beta_{TT} \sim \text{Normal}$

$\beta_{TT} \sim \text{Lognormal, with sign-change}$

$\beta_{TT} \sim S_B \text{ (symmetrical)}$

$\beta_{TT} \sim \text{Triangular}$
Model interpretation example (continued)

- Significant differences in implied distributions

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Lognormal</th>
<th>S_B</th>
<th>Triangular</th>
</tr>
</thead>
<tbody>
<tr>
<td>adj. ρ^2</td>
<td>0.1484</td>
<td>0.1518</td>
<td>0.1512</td>
<td>0.1486</td>
</tr>
<tr>
<td>% positive</td>
<td>14.53%</td>
<td>0%</td>
<td>0%</td>
<td>14.6%</td>
</tr>
</tbody>
</table>

- Differences in model fit very small

- Guidance: use flexible distributions
Theoretical rules vs practical considerations

- Applied part...

- Modelling air travel choice behaviour

- Joint choice of airport, airline and access mode
 - departure from state-of-the-art
 - major gains in model performance

- Three datasets
 - RP data (SF-bay area & Greater London)
 - SP data (US, internet-based)
Random taste heterogeneity

- Some gains in model fit, and insights into behaviour
- Huge increases in estimation cost
- Use of Normal almost unavoidable
- Use of high number of draws almost impossible
- London data (> 10,000 observations, 324 alternatives)
 - basic MMNL models take in excess of 1 month to estimate
- Flexible interactions and non-linearities massively reduce scope for retrieving random taste heterogeneity
Correlation structure

- Shortcomings of NL model for multi-dimensional choice processes
2-level NL

Combined alternative: airport k, airline l, access-mode m
3-level NL

Root

Airport 1

Airport K

Airline 1

Airline L

Airline 1

Airline L

Combined alternative: airport k, airline l, access-mode m

XXX

XXX

Composed nest

λ

Airport nesting parameter

π

Airline nesting parameter

k l m

Imperial College London

20/26
CNL

Root

Airport 1 --→ Airport K --→ Airline 1 --→ Airline L --→ Access-mode 1 --→ Access-mode M

λ_1, λ_k, π_1, π_L, ψ_1, ψ_M

1 1 1 1 L M 1 1 K 1 L M

λ_x

Airport nesting parameter

π_x

Airline nesting parameter

ψ_x

Access-mode nesting parameter

XXXXX

Composite nest

k | l | m

Elementary alternative: airport k, airline l, access-mode m
Correlation structure

- Shortcomings of NL model for multi-dimensional choice processes
- Need cross-nesting structure

<table>
<thead>
<tr>
<th></th>
<th>Par</th>
<th>Adj. ρ^2</th>
<th>est. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNL</td>
<td>55</td>
<td>0.3445</td>
<td>minutes</td>
</tr>
<tr>
<td>NL airport</td>
<td>59</td>
<td>0.3465</td>
<td>hours</td>
</tr>
<tr>
<td>NL airline</td>
<td>74</td>
<td>0.3469</td>
<td>hours</td>
</tr>
<tr>
<td>NL access</td>
<td>60</td>
<td>0.3499</td>
<td>hours</td>
</tr>
<tr>
<td>CNL</td>
<td>91</td>
<td>0.3578</td>
<td>weeks</td>
</tr>
</tbody>
</table>
Advanced structures

- GEV mixtures

- Covariance heterogeneity

- Essentially impossible to use
 - Potential confounding and other mis-specification effects
Conclusions

- Major issues in specification, estimation and interpretation
- Certain guidelines
- Often need to be violated in practice
Discussion

- State-of-the-art has moved forward at great speed
- State-of-practice is trailing behind
- Advanced models often almost inapplicable
 - Estimation and application cost
 - Data requirements
- Often rather small gains in performance
 - log-likelihood is not everything
- Mixture models over-hyped
- Need to educate, and sell our models better
Thank you ...